Unit and Measurements

EXERCISES

ELEMENTARY

Q. 1 (2)

Velocity depends on length and time, so cannot be taken as base quantities.
Q. 2 (3)

Light year is a unit of distance, which is cover by light in a year.

Q. 3 (2)

System is NOT based on unit of mass, length and time alone,
This system is based on all 7 Fundamental physical quantities and 2 supplymentary physical quantities.
Q. 4 (3)

Unit of pressure in S.I. System is pascal.
Q. 5 (4)
$\left[\right.$ magnetisation $=\frac{[\text { magnetic field }]}{[\text { Length }]}$
Q. 6 (4)

Unit of K.E. $\Rightarrow \mathrm{Kg} \mathrm{m}^{2} / \mathrm{S}^{2} \Rightarrow \mathrm{Kg} \mathrm{m} / \mathrm{s}^{2} . \mathrm{m}$
\Rightarrow Newton $\times \mathrm{m}$
Unit of viscosity is poise.
(3) $\left(\mathrm{ML}^{2} \mathrm{~T}^{-2}\right)$
(4) $\left(\mathrm{Joule} / \mathrm{m}^{2}\right)=(\mathrm{N} / \mathrm{m})$
Q. 7 (3)

$$
\begin{aligned}
& \text { Force } \times \frac{\text { Displacement }}{\text { Time }} \\
& =\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \times \frac{\mathrm{L}^{1}}{\mathrm{~T}^{1}}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}
\end{aligned}
$$

So, Dimension of length here is 2 .
Q. 8 (2)
$\mathrm{P}=\mathrm{mvm} \rightarrow$ mass
$\mathrm{v} \rightarrow$ velocity
Dimesion of $[\mathrm{P}]=\left[\mathrm{MLT}^{-1}\right]$
Q. 9 (2)

Boltz mann's const. (k) $\rightarrow \mathrm{J} \rightarrow$ Joule
$\mathrm{K} \rightarrow$ Kelvin
Unit $\rightarrow \mathrm{J} / \mathrm{k}$

Dimension $=\frac{M^{1} L^{2} T^{-2}}{K^{1}}=M^{1} L^{2} T^{-2} K^{-1}$
Q. 10
(2)

Find out Dimension of each physical quantity in all option.
$\mathrm{AM}=\mathrm{Mvr}^{2}=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
Dimension of Torque $(\tau)=\vec{r} \times \vec{F} \rightarrow$ Force $=$ MLT $^{-2}$
($\tau)=\mathrm{L}^{1} \times \mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}$
It is also a dimension of Energy. $=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Power $=\mathrm{W} / \mathrm{t}=\mathrm{ML}^{2} \mathrm{~T}^{-2} / \mathrm{T}=\mathrm{ML}^{2} \mathrm{~T}^{-3}$
Q. 11 (2)

Dimension of Pressure $=\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
= Force/Area
It is same as energy per unit volume
$=\frac{\text { Energy }}{\text { Volume }}=\frac{\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{3}}=\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
Q. 12 (3)

Because same physical quantities are added and subtracted.
[at] $=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
[a] $\mathrm{T}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0},[\mathrm{a}]=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}$
Q. 13 (3)

All the terms in the equation must have the dimension of force
$\therefore[\mathrm{A} \sin \mathrm{Ct}]=\mathrm{MLT}^{-2}$
$\Rightarrow[\mathrm{A}]\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]=\mathrm{MLT}^{-2}$
$\Rightarrow[\mathrm{A}]=\mathrm{MLT}^{-2}$
Similarly, $[\mathrm{B}]=\mathrm{MLT}^{-2}$
$\therefore \frac{[\mathrm{A}]}{[\mathrm{B}]}=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\mathrm{o}}$
Again $[\mathrm{Ct}]=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\circ} \quad \Rightarrow[\mathrm{C}]=\mathrm{T}^{-1}$
$[\mathrm{Dx}]=\mathrm{MLT}^{\mathrm{o}} \Rightarrow[\mathrm{D}]=\mathrm{L}^{-1}$
$\Rightarrow \frac{[C]}{[D]}=\mathrm{M}^{\circ} \mathrm{L}^{1} \mathrm{~T}^{-1}$.
Q. 14 (2)

It is obvious
Q. 15 (1)
$[\mathrm{g}]=\mathrm{LT}^{-2}$ and numerical value $\propto \frac{1}{\text { unit }}$
Q. 16 (4)

We know $\mathrm{n}, \mathrm{u},=\mathrm{n}_{2} \mathrm{u}_{2}$
when $\mathrm{n}_{1}>\mathrm{n}_{2}$ when $\mathrm{n}_{1}<\mathrm{n}_{2}$ or then $\mathrm{u}_{1}<\mathrm{u}_{2}$ then $\mathrm{u}_{1}>\mathrm{u}_{2}$
So, we can say $\mathrm{n} \propto \frac{1}{\mathrm{u}}$
Q. 17 (4)

$$
n_{1} u_{1}=n_{2} u_{2}
$$

$1 \mathrm{~m}^{2}=\mathrm{n}(\mathrm{xm})^{2}$
$\mathrm{n}=\frac{1}{\mathrm{x}^{2}}$
Q. 18 (1)
$\mathrm{n}_{2}=13600\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right]^{1}\left[\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right]^{-3}$
$=13600\left[\frac{1000}{1}\right]^{1}\left[\frac{100}{1}\right]^{-3}$
$\mathrm{n}_{2}=13.6 \mathrm{gcm}^{-3}$
Q. 19 (2) $\therefore \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$
$\therefore \%$ Error in K.E.
$=\%$ error in mass $+2 \times \%$ error in velocity

$$
=2+2 \times 3=8 \%
$$

Q. 20 (2)
Q. 21 (2)

Number of significant figures are 3 , because 10^{3} is decimal multiplier.
Q. 22 (2)
$\because \mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$
$\therefore \%$ error is volume $=3 \times \%$ error in radius
$=3 \times 1=3 \%$
Q. 23 (3)

Mean time period $T=2.00 \mathrm{sec}$
\& Mean absolute error $=\Delta T=0.05 \mathrm{sec}$.
To express maximum estimate of error, the time period should be written as $(2.00 \pm 0.05) \mathrm{sec}$
Q. 24 (3) $\%$ error in velocity $=\%$ error in $L+\%$ error in t
$=\frac{0.2}{13.8} \times 100+\frac{0.3}{4} \times 100$
$=1.44+7.5=8.94 \%$
Q. 25 (3)
Q. 26 (1)
$\frac{1}{20}=0.05$
\therefore Decimal equivalent upto 3 significant figures is 0.0500
Q. 27 (2)
Q. 28 (1)

Since percentage increase in length $=2 \%$
Hence, percentage increase in area of square sheet

$$
=2 \times 2 \%=4 \%
$$

JEE MAIN

OBJECTIVE QUESTIONS

Q. 1 (1)

Q. 2 (1)

Kilogram is not a physical quantity, its a unit.

Q. 3 (3)

PARSEC is a unit of distance.
It is used in astronmiccal science.
Q. 4 (3)
S.I. unit of energy is Joule.
Q. 5 (2)

SI unit of universal gravitational constant G is -
We know $\mathrm{F}=\frac{\mathrm{GM}_{1} \mathrm{M}_{2}}{\mathrm{R}^{2}}$
Here M_{1} and M_{2} are mass
$\mathrm{R}=$ Distance between them M_{1} and M_{2}
$\mathrm{F}=$ Force
$\mathrm{G}=\frac{\mathrm{FR}^{2}}{\mathrm{M}_{1} \mathrm{M}_{2}}=\frac{\mathrm{N}-\mathrm{m}^{2}}{\mathrm{~kg}^{2}}$
So, Unit of $\mathrm{G}=\mathrm{N}-\mathrm{m}^{2} \mathrm{~kg}^{-2}$
Q. 6 (2)

Surface Tension (T) :-
$\mathrm{T}=\frac{\mathrm{J}}{\mathrm{A}}=\frac{\mathrm{J}}{\mathrm{m}^{2}}$
So S.I. unit of surface tension is joule $/ \mathrm{m}^{+2}$
Q. 7
(1)
$F=\eta\left(\frac{d v}{d x}\right) A$
$\frac{\mathrm{kgm}}{\mathrm{sec}^{2}}=\eta \cdot \frac{\mathrm{m} / \mathrm{sec}}{\mathrm{m}} \times \mathrm{m}^{2}$
$\Rightarrow \eta=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~S}^{-1}$

Q. 8 (4)

Here ρ is specific resistance.
$\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}} \Rightarrow \mathrm{ohm}=\frac{\rho \mathrm{m}}{\mathrm{m}^{2}} \quad \Rightarrow \rho=\mathrm{ohm} \times \mathrm{m}$
Q. 9 (4)
Q. 10 (1)

Here i = current
A = crossectional Area
$\mathrm{M}=\mathrm{i} \mathrm{A}$
$=$ Amp. m^{2}

Q. 11 (4)

Unit of universal gas constant (R)
$\mathrm{PV}=\mathrm{nRT} \mathrm{P} \rightarrow$ Pressure
$\mathrm{V} \rightarrow$ Volume
$\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{nT}} \mathrm{T} \rightarrow$ Temperature
$=\frac{\mathrm{N} / \mathrm{m}^{2} \times \mathrm{m}^{3}}{\mathrm{~mol} . \times \mathrm{K}} \mathrm{R} \rightarrow$ Univ. Gas. Const.
$\mathrm{n} \rightarrow$ No. of male
$=\frac{\mathrm{N}-\mathrm{m}}{\mathrm{mol} . \times \mathrm{K}}=\mathrm{Joule}^{-1} \mathrm{~mol}^{-1}$
$\{\mathrm{n}-\mathrm{m}=$ joule $\}$
Q. 12 (4)

Stefan-Constant(σ)
Unit $\rightarrow \mathrm{w} / \mathrm{m}^{2}-\mathrm{k}^{4}=\mathrm{wm}^{-2} \mathrm{k}^{-4}$
Q. 13 (3)
S.I. unit of the angular acceleration is $\mathrm{rad} / \mathrm{s}^{2}$. $\alpha=$ angular velocity/time

Q. 14 (3)

Angular Frequency (f) $=\frac{1}{T}=M^{0} L^{0} T^{-1}$
So, here dimension in length is zero
Q. 15 (2)
$\mathrm{AM}=\mathrm{mvr}$
$[\mathrm{AM}]=\left[\mathrm{MLT}^{-1} \mathrm{~L}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
magnetic flux density $=\frac{\text { weber }}{\text { metre }^{2}}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}}{\mathrm{~L}^{2}}$
Q. 17 (4)

Find dimension in all options.
Here stress = Force/Area
$=\frac{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}}{\mathrm{~L}^{2}}$
stress $=\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$
Q. 18 (4)
$\frac{V T}{I \times \frac{V}{I} \times \frac{Q}{V} \times V}=\frac{T}{Q}=\frac{T}{A T}=A^{-1}$
Q. 19 (3)

$$
\int \frac{\mathrm{dx}}{\sqrt{2 \mathrm{ax}-\mathrm{x}^{2}}}=\mathrm{a}^{\mathrm{n}} \sin ^{-1}\left[\frac{\mathrm{x}}{\mathrm{a}}-1\right] .
$$

L.H.S. is the dimensionless as
denominator $2 \mathrm{ax}-\mathrm{x}^{2}$ must have the dimension of $[\mathrm{x}]^{2}$ (\because we can add or substract only if quantities have same dimension)
$\therefore\left[\sqrt{2 \mathrm{ax}-\mathrm{x}^{2}}\right]=[\mathrm{x}]$
Also, dx has the dimension of $[\mathrm{x}]$
$\therefore \frac{\mathrm{xdx}}{\sqrt{2 \mathrm{ax}-\mathrm{x}^{2}}}$ is having dimension L
Equating the dimension of L.H.S. \& R.H.S. we have $\left[\mathrm{a}^{\mathrm{n}}\right]=\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}$
$\left\{\therefore \sin ^{-1}\left(\frac{\mathrm{x}}{\mathrm{a}}-1\right)\right.$ must be dimensionless
$\therefore \mathrm{n}=1$
Q. 20 (1)
$[\alpha]=\left[\frac{2 \mathrm{ma}}{\beta}\right]$ and $\left[\frac{2 \beta \ell}{\mathrm{ma}}\right]=1$
$[\alpha]=\left[\frac{\mathrm{ma}}{\beta}\right] \quad\left[\frac{\mathrm{ma}}{\beta}\right]=\ell$
$[\alpha]=\mathrm{L}$
Q. 21 (2)
$[\mathrm{v}]=[\mathrm{k}]\left[\lambda^{\mathrm{a}} \rho^{\mathrm{b}} \mathrm{g}^{\mathrm{c}}\right] \Rightarrow \mathrm{LT}^{-1}=\mathrm{L}^{\mathrm{a}} \mathrm{M}^{\mathrm{b}} \mathrm{L}^{-3 \mathrm{~b}} \mathrm{~L}^{\mathrm{c}} \mathrm{T}^{-2 \mathrm{c}}$
$\Rightarrow \mathrm{LT}^{-1}=\mathrm{M}^{\mathrm{b}} \mathrm{L}^{\mathrm{a}-3 \mathrm{~b}+\mathrm{c}} \mathrm{T}^{-2 \mathrm{c}}$
$\Rightarrow \mathrm{a}=1 / 2, \mathrm{~b}=0, \mathrm{c}=1 / 2$
so, $v^{2}=k g \lambda$

Q. 16 (2)

Q. 22 (4)

By checking each option.
$\frac{\mathrm{V}^{2}}{\mathrm{rg}}=\frac{\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]^{2}}{\left[\mathrm{~L}^{1}\right]\left[\mathrm{L}^{1} \mathrm{~T}^{-2}\right]}$
$=\frac{\mathrm{L}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{2} \mathrm{~T}^{-2}}=\left[\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{0}\right]$
Q. 23 (1)
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2}(\mathrm{~kg})^{-2}$
$=6.67 \times 10^{-11} \times 10^{5}$ dyne $\times 100^{2} \mathrm{~cm}^{2} /\left(10^{3}\right)^{2} \mathrm{~g}^{2}=\mathbf{Q .} \mathbf{2 8}$ 6.67×10^{-8} dyne- $\mathrm{cm}^{2}-\mathrm{g}^{-2}$

Q. 24 (3)

$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}$
Watt $=$ Joule/sec.
Joule $=$ Watt-sec.
One watt-hour $=1$ watt $\times 60 \times 60 \mathrm{sec}$
1 Hour= $60 \times 60 \mathrm{sec} .=3600$ watt-sec

$$
\begin{aligned}
& =3600 \text { Joule } \\
& =3.6 \times 10^{3} \text { Joule }
\end{aligned}
$$

Q. 25 (1)

Given
$\mathrm{P}=10^{6}$ dyne $/ \mathrm{cm}^{2}$
$\mathrm{n}_{1} \mathrm{u}_{1}=\mathrm{n}_{2} \mathrm{u}_{2}$
$\mathrm{n}_{1}\left[\mathrm{M}_{1}^{1} \mathrm{~L}_{1}^{-1} \mathrm{~T}_{1}^{-2}\right]=10^{6}\left[\mathrm{M}_{2}^{1} \mathrm{~L}_{2}^{-1} \mathrm{~T}_{2}^{-2}\right]$
$\mathrm{n}_{1}=10^{6}\left[\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right]^{1}\left[\frac{\mathrm{~L}_{2}}{\mathrm{~L}_{1}}\right]^{-1}\left[\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right]^{-2}$
$=10^{6}\left[\frac{1}{1000}\right]^{1}\left[\frac{1}{100}\right]^{-1}$
$\Rightarrow 10^{6} \times \frac{10^{2}}{10^{3}}=10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Q. 26 (2)

$$
\rho=2 \mathrm{~g} / \mathrm{cm}^{3}
$$

$$
\mathrm{n}_{1} \mathrm{u}_{1}=\mathrm{n}_{2} \mathrm{u}_{2}
$$

$$
\mathrm{n}_{1}\left[\mathrm{M}_{1}^{1} \mathrm{~L}_{1}^{-3}\right]=2\left[\mathrm{M}_{2}^{1} \mathrm{~L}_{2}^{-3}\right]
$$

$\mathrm{n}_{1}=2\left[\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right]^{1}\left[\frac{\mathrm{~L}_{2}}{\mathrm{~L}_{1}}\right]^{-3}=2\left[\frac{10^{-3}}{1}\right]^{1}\left[\frac{10^{-2}}{1}\right]^{-3}$
$=2 \times 10^{-3} \times 10^{6}$
$=2 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$
Q. 27 (1)
$\mathrm{A}=\ell \mathrm{b}=10.0 \times 1.00=10.00$
$\frac{\Delta \mathrm{A}}{\mathrm{A}}=\frac{\Delta \ell}{\ell}+\frac{\Delta \mathrm{b}}{\mathrm{b}}$
$\frac{\Delta \mathrm{A}}{10.00}=\frac{0.1}{10.0}+\frac{0.01}{1.00}$
$\Rightarrow \Delta \mathrm{A}=10.00\left(\frac{1}{100}+\frac{1}{100}\right)=10.00\left(\frac{2}{100}\right)$
$= \pm 0.2 \mathrm{~cm}^{2}$.
$\left(\frac{\Delta \mathrm{A}}{\mathrm{A}}\right)_{\text {min }}=\left|\left(\frac{\Delta \ell}{\ell}-\frac{\Delta \mathrm{b}}{\mathrm{b}}\right)\right|=\left|\frac{1}{100}-\frac{1}{100}\right|=0$

Q. 29 (2)

$$
\rho=\frac{\mathrm{m}}{\mathrm{~V}}=\frac{\mathrm{m}}{\ell^{3}}
$$

Given: $\frac{\Delta \mathrm{m}}{\mathrm{m}}= \pm 2 \%= \pm 2 \times 10^{-2} \frac{\Delta \ell}{\ell}= \pm 1 \%$
$= \pm 1 \times 10^{-2}$
$\frac{\Delta \rho}{\rho}=\frac{\Delta \mathrm{m}}{\mathrm{m}}+3 \frac{\Delta \ell}{\ell}$
$=2 \times 10^{-2}+3 \times 10^{-2}=5 \times 10^{-2}=5 \%$
Q. 30 (1)
$\mathrm{g}=4 \pi^{2} \frac{\ell}{\mathrm{~T}^{2}}$
$\frac{\Delta \ell}{\ell}=2 \%= \pm 2 \times 10^{-2}$
$\frac{\Delta \mathrm{T}}{\mathrm{T}}= \pm 3 \%= \pm 3 \times 10^{-2}$
$\Rightarrow \frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{\Delta \ell}{\ell}+\frac{2 \Delta \mathrm{~T}}{\mathrm{~T}}$
$=2 \times 10^{-2}+2 \times 3 \times 10^{-2}=8 \times 10^{-2}= \pm 8 \%$
Q. 31 (2)
$\Delta \mathrm{t}=0.2 \mathrm{~s}$.
$\mathrm{t}=25 \mathrm{~s}$
$\mathrm{T}=\frac{\mathrm{t}}{\mathrm{N}} \Rightarrow \frac{\Delta \mathrm{T}}{\mathrm{T}}=\frac{\Delta \mathrm{t}}{\mathrm{t}}=\frac{0.2}{25}=0.8 \%$
Q. 32 (1)

$\mathrm{v}=\ell \mathrm{bh}$
$\frac{\Delta v}{v}=\frac{\Delta \ell}{\ell}+\frac{\Delta \mathrm{b}}{\mathrm{b}}+\frac{\Delta \mathrm{h}}{\mathrm{h}}$
$=\frac{0.1}{10}+\frac{0.1}{5}+\frac{0.1}{5}=\frac{0.5}{10}= \pm 5 \%$
Q. 33 (4)
$\frac{\Delta x}{x}=1 \%=10^{-2}$
$\frac{\Delta y}{y}=3 \%=3 \times 10^{-2}$
$\frac{\Delta z}{z}=2 \%=2 \times 10^{-2}$
$t=\frac{x y^{2}}{z^{3}}$
$\frac{\Delta t}{t}=\frac{\Delta x}{x}+\frac{2 \Delta y}{y}+\frac{3 \Delta z}{z}$
$=10^{-2}+2 \times 3 \times 10^{-2}+3 \times 2 \times 10^{-2}$
$=13 \times 10^{-2} \quad \therefore \quad \%$ error in $\mathrm{t}=\frac{\Delta \mathrm{t}}{\mathrm{t}} \times 100=13 \%$
Q. 34 (3)
$\mathrm{D}=(4.23 \pm 0.01) \mathrm{cm}$
$\mathrm{d}=(3.89 \pm 0.01) \mathrm{cm}$
$\Delta t=(D-d) / 2$
$=\frac{(4.23 \pm 0.01)-(3.89 \pm 0.01)}{2}$
$=\frac{(4.23-3.89) \pm(0.01+0.01)}{2}$
$=(0.34 \pm 0.02) / 2 \mathrm{~cm}$
$=(0.17 \pm 0.01) \mathrm{cm}$
Q. 35 (2)
$\mathrm{m}=1.76 \mathrm{~kg}$
$\mathrm{M}=25 \mathrm{~m}$
$=25 \times 1.76$
$=44.0 \mathrm{~kg}$
Note: Mass of one unit has three significant figures and it is just multiplied by a pure number (magnified). So result should also have three significant figures.
Q. 36 (2)
$\mathrm{R}_{1}=(24 \pm 0.5) \Omega$
$\mathrm{R}_{2}=(8 \pm 0.3) \Omega$
$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$=(32 \pm 0.8) \Omega$
Q. 37 (2)
$\Delta \ell=0.5 \mathrm{~mm}$
$\mathrm{N}=100$ divisions
zero correction $=2$ divisions
Reading $=$ Measured value + zero correction
$=(8 \times 0.5) \mathrm{mm}+(83-2) \times \frac{0.5}{100}$.
$=4 \mathrm{~mm}+81 \times \frac{0.5}{100} \mathrm{~mm}$
$=4.405 \mathrm{~mm}$

Q. 38 (4)

$\Delta \ell=1 \mathrm{~mm}$
$\mathrm{N}=50$ division
zero error $=-6$ Divisions
$=-0.12 \mathrm{~mm}$
Diameter $=$ Measured value + zero correction
$=3 \times 1+(6+31) \times \frac{1}{50}$
$=3+0.74=3.74 \mathrm{~mm}$
Q. 39 (1)
$\mathrm{D}=2 \times 1+5 \times \frac{10-9}{100}=2.05 \mathrm{~cm}$

Q. 40 (2)

Volume of a sphere $=\frac{4}{3} \pi(\text { radius })^{3}$
or $V=\frac{4}{3} \pi R^{3}$
Taking logarithm on both sides, we have
$\log \mathrm{V}=\log \frac{4}{3} \pi+3 \log \mathrm{R}$
Differentiating, we get

$$
\frac{\Delta V}{V}=0+\frac{3 \Delta R}{R}
$$

Accordingly, $\frac{\Delta R}{R}=2 \%$

Thus, $\quad \frac{\Delta \mathrm{V}}{\mathrm{V}}=3 \times 2 \%=6 \%$

JEE ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (B)

Solar day \rightarrow Time far Earth to wake a complete rotation on its axis
Parallactic second [1 Parsec] \rightarrow It is a distance corresponding to a parallex of one second of arc.
Leap year \rightarrow A leap year is year (time) Containing one extra day.
Lunar Month \rightarrow A lunar month is the time between two identical view moons of full moons.
1 Lunar month $=29.53059$ days.
Q. 2 (B)

Unit of impulse $=\Rightarrow$ Impulse $=$ Force \times time
$=\mathrm{kg} \frac{\mathrm{m}}{\sec ^{2}} \mathrm{sec}=\mathrm{kg} \frac{\mathrm{m}}{\mathrm{sec}}=\mathrm{mv}$
The unit is same as the unit of linear momentum.
Q. 3 (D)

Energy W $=\mathrm{f} \times \mathrm{d}=\mathrm{Nm}$
$\mathrm{W}=\mathrm{eV}=$ electron-volt
$\mathrm{W}=\mathrm{p} \times \mathrm{t}=$ Watt hour
So, $\mathrm{kg} \times \mathrm{m} / \mathrm{sec}^{2}$ is not the unit of energy.
Q. 4 (D)

Radian is a unit of Angle.
Q. 5 (C)

Dimensionless quantity may have a unit
Ex. Angle Unit \rightarrow Radian
Dimension $\rightarrow \mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\circ}$
Q. 6 (C)

Only same physical quantities can be added or substracted,
It's only multiply and divided only.
So, a/b denote a new physical quantity.
Q. $7 \quad$ (C)

They Can't e added or Substracted in Same expression.
Q. 8 (D)

Plank Const. (h) \rightarrow
$\mathrm{E}=\mathrm{hf}$
$\Rightarrow \quad \mathrm{h}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\frac{1}{\mathrm{~T}}}$
Unit \rightarrow J-S
Dimension $=M^{1} L^{2} T^{-2} \times T^{1}=M^{1} L^{2} \mathrm{~T}^{-1}$

This is also a dimension of Angular momentum.

$$
=\mathrm{mvr}
$$

$$
=\mathrm{MLT}^{-1} \mathrm{~L}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}
$$

Q. $9 \quad$ (B)

$\mathrm{P}=\mathrm{P}_{\mathrm{o}} \operatorname{Exp}\left(-\alpha \mathrm{t}^{2}\right)$
Here $\operatorname{Exp}\left(-\alpha t^{2}\right)$ is a dimensionless
So, dimension of $\left[\alpha t^{2}\right]=M^{\circ} L^{\circ} \mathrm{T}^{\circ}$
So, $[\alpha]=\frac{\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}}{\mathrm{~T}^{2}}$

$$
[\alpha]=\mathrm{M}^{0} \mathrm{~L}^{\circ} \mathrm{T}^{-2}
$$

Q. 10 (C)

By Checking the dimension in all options
(C) Moment of Inertia $=\mathrm{Mr}^{2}$
$=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{0}$
Moment of force $=r \times F$
$=\mathrm{L}^{1} \times \mathrm{M}^{1} \mathrm{~L}^{\prime} \mathrm{T}^{-2}$
$=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
Q. 11 (D)

Action $=$ Energy \times Time $=M^{1} L^{2} T^{-2} \times T^{1}$
$=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
It is same as dimension of Impulse \times distance
$=\mathrm{MLT}^{-1} \times \mathrm{L}^{1}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
Q. 12 (A)
$\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$ is a dimension of kinetic energy.
Q. 13 (C)

By checking the dimension in all options
[Pressure $]=\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}$
Q. 14 (B)
$\frac{E J^{2}}{M^{5} G^{2}} \mathrm{~J}=\mathrm{mvr}, \mathrm{J}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
$=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Dimension of Angle $=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
Q. 15 (C)
$v=a t+\frac{b}{t+c}$
Same physical quantity can be added or substracted.
Dimension of a

$$
\begin{aligned}
& {[\mathrm{v}]=[\mathrm{at}]} \\
& {[\mathrm{a}]=\frac{[\mathrm{v}]}{[\mathrm{t}]}=\frac{\mathrm{L}^{\mathrm{L}} \mathrm{~T}^{-1}}{\mathrm{~T}^{1}}=\mathrm{L}^{\mathrm{L}} \mathrm{~T}^{-2}}
\end{aligned}
$$

Here $\mathrm{t}+\mathrm{c}$ is also a Time (t)
$[\mathrm{v}]=\left[\frac{\mathrm{b}}{\mathrm{t}}\right]$
$[\mathrm{b}]=[\mathrm{v}][\mathrm{t}]=\mathrm{L}^{1} \mathrm{~T}^{-1} \times \mathrm{T}^{1}$

$$
[b]=L^{1}
$$

Q. 16 (C)

$\mathrm{x}(\mathrm{t})=\frac{\mathrm{v}_{\mathrm{o}}}{\alpha}\left[1-\mathrm{e}^{-\alpha \mathrm{t}}\right]$
Dimension of v_{o} and α
Here $\mathrm{e}^{-\alpha \mathrm{t}}$ is dimensionless so,

$$
\begin{aligned}
& {[\alpha][\mathrm{t}]=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\circ}} \\
& {[\alpha]=\frac{\mathrm{M}^{\mathrm{o}} \mathrm{~L}^{\circ} \mathrm{T}^{\mathrm{o}}}{\mathrm{~T}^{1}}=\mathrm{T}^{-1}} \\
& {[\alpha]=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{-1}}
\end{aligned}
$$

Here $1-\mathrm{e}^{-\alpha t}$ is a number

$$
\begin{aligned}
& {[\mathrm{x}(\mathrm{t})]=\frac{\mathrm{V}_{\mathrm{o}}}{\alpha}} \\
& {\left[\mathrm{~V}_{\mathrm{o}}\right]=\left[\mathrm{L}^{1}\right]\left[\mathrm{T}^{-1}\right]} \\
& {\left[\mathrm{V}_{\mathrm{o}}\right]=\mathrm{M}^{\circ} \mathrm{L}^{1} \mathrm{~T}^{-1}}
\end{aligned}
$$

Q. 17 (D)
$\mathrm{F}=\mathrm{Pt}^{-1}+\alpha \mathrm{t}$
Here F and Pt^{-1} is a same
Physical quantity

$$
\begin{aligned}
& {[\mathrm{F}]=\left[\mathrm{Pt}^{-1}\right]} \\
& {[\mathrm{P}]=\frac{[\mathrm{F}]}{\left[\mathrm{t}^{-}\right]}=[\mathrm{F} \times \mathrm{t}]=\mathrm{ML} \mathrm{~T}^{-2} \times \mathrm{T}=\mathrm{MLT}^{-1}}
\end{aligned}
$$

We find it is same as dimension of momentum $=$ MLT $^{-1}$
Q. 18 (D)
$Y=a \sin (b t-c x)$
Dimension of b
Here bt is dimensionless
$[b t]=M^{\circ} L^{\circ} \mathrm{T}^{0}$
$[b]=\frac{M^{0} L^{0} T^{0}}{\left[\mathrm{~T}^{1}\right]}=M^{0} L^{\circ} \mathrm{T}^{-1}$
It is a dimension of wave frequency.
Q. 19 (A)

Dimension of $\mathrm{b}=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{-1}$
Dimension of c

$$
[\mathrm{cx}]=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\mathrm{o}}[\text { Dimension less }]
$$

$$
[\mathrm{c}]=\frac{\mathrm{M}^{\mathrm{o}} \mathrm{~L}^{\mathrm{o}} \mathrm{~T}^{\mathrm{o}}}{\mathrm{~L}^{1}}=\mathrm{M}^{\mathrm{o}} \mathrm{~L}^{-1} \mathrm{~T}^{\mathrm{o}}
$$

So, Dimension of $\left[\frac{b}{c}\right]=\frac{M^{0} L^{0} T^{-1}}{M^{0} L^{-1} T^{0}}=\mathrm{M}^{\circ} L^{1} \mathrm{~T}^{-}$
Q. 20 (C)

Here $\sqrt{1+\frac{2 \mathrm{k} \ell}{\mathrm{ma}}}$ is a number.

It's a dimensionless quantity.

$$
\begin{aligned}
& {\left[\frac{2 \mathrm{k} \ell}{\mathrm{ma}}\right]=\left[\mathrm{M}^{\mathrm{o}} \mathrm{~L}^{0} \mathrm{~T}^{\mathrm{o}}\right]} \\
& {[\mathrm{K}]=\frac{[\mathrm{m}][\mathrm{a}]}{[\ell]}} \\
& =\frac{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}}{\mathrm{~L}^{1}}=\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}
\end{aligned}
$$

So dimession of [b] is
$[\mathrm{b}]=\left[\frac{\mathrm{ma}}{\mathrm{K}}\right]=\left[\frac{\mathrm{MLT}^{-2}}{\mathrm{MT}^{-2}}\right]$
$[\mathrm{b}]=\mathrm{L}$
unit of b is metre
Q. 21 (D)
$\alpha=\frac{\mathrm{F}}{\mathrm{V}^{2}} \sin (\beta \mathrm{t})$
Here $\sin (\beta \mathrm{t})$ is dimensionless.

$$
\begin{aligned}
& {[\beta \mathrm{t}]=\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\circ}} \\
& \beta=\frac{\mathrm{M}^{\circ} \mathrm{L}^{\circ} \mathrm{T}^{\mathrm{o}}}{\mathrm{~T}^{1}}=\left[\mathrm{T}^{-1}\right] \\
& {[\alpha]=\left[\frac{\mathrm{F}}{\mathrm{~V}^{2}}\right]}
\end{aligned}
$$

$$
=\frac{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}}{\left[\mathrm{~L}^{1} \mathrm{~T}^{-1}\right]^{2}}=\frac{\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}}{\mathrm{~L}^{2} \mathrm{~T}^{-2}}
$$

$$
[\alpha]=\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{\circ}\right]
$$

Q. 22 (D)

L α FAT
$\mathrm{L}=\mathrm{K} \mathrm{F}^{\mathrm{a}} \mathrm{A}^{\mathrm{b}} \mathrm{T}^{\mathrm{c}}$
$\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}=\mathrm{K}\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^{1} \mathrm{~T}^{-2}\right]^{\mathrm{b}}[\mathrm{T}]^{\mathrm{c}}$
$\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}=\mathrm{K}\left[\mathrm{M}^{\mathrm{a}}\right]\left[\mathrm{L}^{\mathrm{a}+\mathrm{b}}\right]\left[\mathrm{T}^{-2 \mathrm{a}-2 \mathrm{~b}+\mathrm{c}}\right]$
By comparesion and solving we find
[a=0][b=1][c=2]
Put these value in Equa. (i)

$$
\left[\mathrm{L}=\mathrm{F}^{\circ} \mathrm{A}^{1} \mathrm{~T}^{2}\right]
$$

Q. 23 (B)

F α Av ρ
$\mathrm{F}=\mathrm{KA}^{\mathrm{a}} \mathrm{v}^{\mathrm{b}} \rho^{\mathrm{c}}$
$=K\left[L^{2}\right]^{a}\left[L^{1} \mathrm{~T}^{-1}\right]^{b}\left[\mathrm{M}^{1} \mathrm{~L}^{-3}\right]^{c}$
$\mathrm{F}=\mathrm{K}\left[\mathrm{M}^{c} \mathrm{~L}^{2 a+b-3 c} \mathrm{~T}^{-b}\right]$
$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}=\mathrm{K}\left[\mathrm{M}^{\mathrm{c}} \mathrm{L}^{2 a+b-3 c} \mathrm{~T}^{-\mathrm{b}}\right]$
$\mathrm{c}=1$
$-2=-b \Rightarrow b=2$
and
$2 \mathrm{a}+\mathrm{b}-3 \mathrm{c}=1$
$2 \mathrm{a}+2-3=1 \Rightarrow \mathrm{a}=1$
So $F=A^{1} v^{2} q^{1}$
$\therefore \mathrm{F}=\mathrm{Av}^{2} \rho$
Q. 24 (B)
$\mathrm{v} \alpha \lambda \rho \mathrm{g}$
$\mathrm{v}=\mathrm{k} \lambda^{\mathrm{a}} \rho^{\mathrm{b}} \mathrm{g}^{\mathrm{c}}$
$\left[M^{0} L^{1} T^{-1}\right]=K\left[M^{o} L^{1} T^{o}\right]^{a}\left[M^{1} L^{-3} T^{o}\right]^{b}\left[M^{o} L^{1} T^{-2}\right]^{c}$
$\left[\mathrm{M}^{\mathrm{o}} \mathrm{L}^{1} \mathrm{~T}^{-1}\right]=\mathrm{K}\left[\mathrm{M}^{\mathrm{b}} \mathrm{L}^{\mathrm{a}-3 \mathrm{~b}+\mathrm{c}} \mathrm{T}^{-2 \mathrm{c}}\right]$
Comparing both sides

$$
\mathrm{b}=0
$$

$-1=-2 \mathrm{c} \Rightarrow \mathrm{c}=\frac{1}{2}$
$1=\mathrm{a}-3 \mathrm{~b}+\mathrm{c}$
$1=a-0+1 / 2$
$\mathrm{a}=\frac{1}{2}, \quad \mathrm{~V}=\mathrm{K} \lambda^{1 / 2} \mathrm{q}^{\mathrm{o}} \mathrm{g}^{1 / 2}$
squaring both sides
$\mathrm{V}^{2}=\mathrm{kg} \lambda$
Q. 25 (B)
$\mathrm{F}=\mathrm{KAdv}^{\mathrm{x}}$
$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}=\mathrm{K}\left[\mathrm{L}^{2}\right]\left[\mathrm{M}^{1} \mathrm{~L}^{-3}\right]\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]^{\mathrm{x}}$
$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}=\mathrm{K}\left[\mathrm{M}^{1} \mathrm{~L}^{-1+x} \mathrm{~T}^{-x}\right]$
By comparison of power
$-1+\mathrm{x}=1 \Rightarrow \mathrm{x}=2$

Q. 26 (B)

$\mathrm{V}=\mathrm{g}^{\mathrm{p}} \mathrm{h}^{\mathrm{q}}$
$\mathrm{V}=\mathrm{Kg}^{\mathrm{p}} \mathrm{h}^{\mathrm{q}}$
$\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]=\left[\mathrm{L}^{1} \mathrm{~T}^{-2}\right]^{\mathrm{p}}\left[\mathrm{L}^{1}\right]^{q}$
$\mathrm{L}^{1} \mathrm{~T}^{-1}=\mathrm{L}^{\mathrm{p}+\mathrm{q}} \mathrm{T}^{-2 \mathrm{p}}$
By comparing both sides
$\mathrm{p}+\mathrm{q}=1,-2 \mathrm{p}=-1$
$\mathrm{p}=1 / 2, \mathrm{q}=1 / 2$
Q. 27 (D)
$\ell \alpha c^{a} g^{b} p^{c}$
$\ell=\mathrm{kc}^{\mathrm{a}} \mathrm{g}^{\mathrm{b}} \mathrm{p}^{\mathrm{c}}$
$\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right]=\mathrm{K}\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]^{\mathrm{a}}\left[\mathrm{L}^{1} \mathrm{~T}^{-2}\right]^{\mathrm{b}}\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]^{\mathrm{c}}$
$\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}=\mathrm{K}\left[\mathrm{M}^{c} \mathrm{~L}^{\mathrm{abb}-\mathrm{c}} \mathrm{T}^{-\mathrm{a}-2 \mathrm{~b}-2 \mathrm{c}}\right]$
By comparison of powers
$\mathrm{a}=2$
$\mathrm{b}=-1$
$\mathrm{c}=0$
So, $\ell=c^{2} / \mathrm{g}$
Q. 28 (D)

Unit of length is micrometer
Unit of time is mirosecond
\because Velocity $=\frac{\text { Displacement }}{\text { Time taken }}$

$$
=\frac{10^{-6} \mathrm{~m}}{10^{-6} \mathrm{sec}}=\mathrm{m} / \mathrm{sec}
$$

Q. 29 (A)
$\mathrm{n}_{1} \mathrm{u}_{1}=\mathrm{n}_{1} \mathrm{u}_{1}$
$\mathrm{n}_{1}\left[\mathrm{M}_{1}^{1} \mathrm{~L}_{1}^{2} \mathrm{~T}_{1}^{-3}\right]=1\left[\mathrm{M}_{2}^{1} \mathrm{~L}_{2}^{2} \mathrm{~T}_{2}^{-3}\right]$
$\mathrm{n}_{1}=\left[\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}\right]^{1}\left[\frac{\mathrm{~L}_{2}}{\mathrm{~L}_{1}}\right]^{2}\left[\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right]^{-3}$
$=\left[\frac{20}{1}\right]^{1}\left[\frac{10}{1}\right]^{2}\left[\frac{5}{1}\right]^{-3}$
$=\frac{20 \times 100}{5 \times 5 \times 5}=16$
$\mathrm{n}_{1}=16$
Unit of power in new system $=16 \mathrm{Watt}$.
Q. 30 (C)
$10^{3}(\mathrm{~N})=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}$
$10^{3}=[\mathrm{M}]^{1}\left[10^{3}\right]^{1}[100]^{-2}$
$\mathrm{M}=\frac{10^{3}}{10^{3} \times(100)^{-2}}=10000 \mathrm{~kg}$
Q. 31 (D)
$\mathrm{g}=10 \mathrm{~ms}^{-2}$
$\mathrm{n}_{1} \mathrm{u}_{1}=\mathrm{n}_{2} \mathrm{u}_{2}$
$10\left[\mathrm{~L}_{1}\right]^{1}\left[\mathrm{~T}_{1}\right]^{-2}=\mathrm{n}_{2}\left[\mathrm{~L}_{2}\right]^{1}\left[\mathrm{~T}_{2}\right]^{-2}$
$\mathrm{n}_{2}=10\left[\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right]^{1}\left[\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right]^{-2}$
$\mathrm{n}_{2}=10\left[\frac{1}{1000}\right]^{1}\left[\frac{1}{3600}\right]^{-2}$
$\mathrm{n}_{2}=129600$
Q. 32 (C)

In new system
Length \rightarrow m 2m
Velocity $\rightarrow \mathrm{m} / \mathrm{sec}$. $2 \mathrm{~m} / \mathrm{sec}$
Force $\rightarrow \mathrm{kgm} / \mathrm{sec}^{2} 2 \mathrm{kgm} / \mathrm{sec}^{2}$
\because Momentum $(\mathrm{P})=\mathrm{mv}=\mathrm{kg} \mathrm{m} / \mathrm{sec}$.
$P=\operatorname{kg} \frac{m}{\sec } \times \frac{m}{m} \times \frac{\mathrm{sec}}{\mathrm{sec}}$
$P=\operatorname{kg} \frac{\mathrm{m}}{\sec ^{2}} \times \frac{\mathrm{m}}{(\mathrm{m} / \mathrm{sec})}$
In new system

$$
\begin{aligned}
& \mathrm{P}^{1}=\left(2 \mathrm{~kg} \frac{\mathrm{~m}}{\sec ^{2}}\right) \times \frac{(2 \mathrm{~m})}{(2 \mathrm{~m} / \mathrm{sec})} \\
& \mathrm{P}^{1}=(2 \mathrm{~kg} \mathrm{~m} / \mathrm{sec})=2 \mathrm{P}
\end{aligned}
$$

So, Here unit of momentum is doubled.
Q. 33 (D)

Unit of Energy $=\mathrm{kg} \frac{\mathrm{m}^{2}}{\sec ^{2}}$
$=\left(\mathrm{kg} \frac{\mathrm{m}}{\sec ^{2}}\right) \times(\mathrm{m})$
Now unit of force and length are doubled.
$=\left(2 \mathrm{~kg} \frac{\mathrm{~m}}{\sec ^{2}}\right)(2 \mathrm{~m})=4 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\sec ^{2}}$ So, Unit of Energy
is 4 times.
Q. 34 (C)
K.E. $=\frac{1}{2} \mathrm{mv}^{2}$

Dimension $=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
Now M.L are doubled

$$
=(2 \mathrm{M})^{1}(2 \mathrm{~L})^{2}\left(\mathrm{~T}^{-2}\right)=8 \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}
$$

So, K.E. will become 8 times.
Q. 35 (B)

Take small angle approximation

$\operatorname{Sin} \theta=\frac{D}{r_{m}}$
$\operatorname{Sin} 0.50^{\circ}=\frac{D}{r_{m}}$
$0.50 \times \frac{\pi}{180}=\frac{D}{384000}$
$\mathrm{D}=0.50 \times \frac{\pi}{180} \times 384000$
$\mathrm{D}=3349.33 \Rightarrow \mathrm{D} \approx 3350 \mathrm{~km}$.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (A), (B), (C), (D)

All A, B \& C are obvious.
Q. 2 (A), (B), (D)

It is obvious
Q. 3 (C), (D)

By checking dimension in each option
Pressure $=\frac{F}{A}=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$

Energy per unit volume $=\frac{\text { Energy }}{\text { Volume }}=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}=$
$\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$
(A), (B), (C)
$[\alpha]=\frac{[\mathrm{h}]}{\left[\sigma \theta^{4}\right]}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-1}}{\mathrm{MT}^{-3} \mathrm{~K}^{-4} \cdot \mathrm{~K}^{4}}=\mathrm{L}^{2} \mathrm{~T}^{2}$
So, unit of α will be $\mathrm{m}^{2} \mathrm{~s}^{2}$.

$$
\frac{(\text { weber })(\Omega)^{2}(\text { Farad })^{2}}{\text { Tesla }}=\frac{\operatorname{Tm}^{2} \cdot \Omega^{2} \mathrm{~F}^{2}}{\mathrm{~T}}=\mathrm{m}^{2} \mathrm{~s}^{2}
$$

Q. 5 (B)
Q. 6 (A)
Q. 7 (C)
$[\mathrm{f}]=[\mathrm{A}][\mathrm{t}]$ $=[B][t]^{2}$
$=[\mathrm{C}]\left[\frac{1}{\mathrm{t}}\right]$
Q. 8 (C)
Q. 9 (D)
Q. 10 (B)

$$
\begin{aligned}
& {[\mathrm{C}]=[\mathrm{F}][\mathrm{r}]^{2}=\mathrm{ML}^{3} \mathrm{~T}^{-2}} \\
& {[\mathrm{kr}]=1} \\
& \Rightarrow[\mathrm{k}]=\mathrm{L}^{-1}
\end{aligned}
$$

Q. 11 (B)
Q. 12 (C)
Q. 13 (D)
$\mathrm{m}=\mathrm{h}^{\mathrm{x}} \mathrm{c}^{\mathrm{y}} \mathrm{G}^{\mathrm{z}}$
$\Rightarrow \mathrm{M}=\left(\mathrm{ML}^{2} \mathrm{~T}^{-1}\right)^{\mathrm{x}}\left(\mathrm{LT}^{-1}\right)^{\mathrm{y}}\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right)^{\mathrm{z}}$
$\mathrm{l}=\mathrm{h}^{\mathrm{x}} \mathrm{c}^{\mathrm{y}} \mathrm{G}^{\mathrm{z}} \quad \Rightarrow \mathrm{L}=\left(\mathrm{ML}^{2} \mathrm{~T}^{-1}\right)^{\mathrm{x}}\left(\mathrm{LT}^{-1}\right)^{\mathrm{y}}\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right)^{\mathrm{z}}$
$\mathrm{t}=\mathrm{h}^{\mathrm{x}} \mathrm{c}^{\mathrm{y}} \mathrm{G}^{\mathrm{z}} \quad \Rightarrow \mathrm{T}=\left(\mathrm{ML}^{2} \mathrm{~T}^{-1}\right)^{\mathrm{x}}\left(\mathrm{LT}^{-1}\right)^{\mathrm{y}}\left(\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right)^{\mathrm{z}}$
Q. $14 \quad(\mathbf{1}) \rightarrow(\mathbf{Q}) \rightarrow(\mathbf{c}),(\mathbf{2}) \rightarrow(\mathbf{S}) \rightarrow(\mathbf{a}),(\mathbf{3}) \rightarrow(\mathbf{P}) \rightarrow \quad$ Q. $2 \quad 4$
(b), (4) \rightarrow (R) \rightarrow (d)
$\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \Rightarrow[\mathrm{G}]=\frac{[\mathrm{F}]\left[\mathrm{r}^{2}\right]}{\left[\mathrm{m}_{1} \mathrm{~m}_{2}\right]}=\frac{\mathrm{MLT}^{-2} \mathrm{~L}^{2}}{\mathrm{M}^{2}}=\mathrm{M}^{-1} \mathrm{~L}^{3}$
T^{-2}
[Torque] $=[\mathrm{f}][\mathrm{d}]=\mathrm{MLT}^{-2} \mathrm{~L}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
$[$ Momentum $]=[\mathrm{m}][\mathrm{v}]=\mathrm{MLT}^{-1}$
$[\mathrm{p}]=\frac{[\mathrm{F}]}{[\mathrm{A}]}=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$.
Q. 15 (i) \rightarrow (Q) \rightarrow (d), (ii) \rightarrow (S) \rightarrow (b), (iii) \rightarrow (U) \rightarrow
(e), (iv) \rightarrow (R) \rightarrow (a), (v) \rightarrow (T) \rightarrow (f)
$(\mathrm{vi}) \rightarrow(\mathbf{P}) \rightarrow(\mathrm{c})$
(i) $\mathrm{U}=\sigma \mathrm{AT}^{4} \Rightarrow[\sigma]=\frac{[\mathrm{U}]}{[\mathrm{A}]\left[\mathrm{T}^{4}\right]}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-3}}{\mathrm{~L}^{2} \mathrm{~K}^{4}}$
$=\mathrm{MT}^{-3} \mathrm{~K}^{-4}$
(ii) $\lambda \mathrm{T}=\mathrm{b} \Rightarrow[\mathrm{b}]=[\lambda][\mathrm{T}]=\mathrm{LK}$
(iii) $\mathrm{F}=6 \pi \eta \mathrm{rv} \Rightarrow[\eta]=\frac{[\mathrm{F}]}{[\mathrm{r}][\mathrm{v}]}=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L} \cdot \mathrm{LT}^{-1}}=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
(iv) $\mathrm{I}=\frac{\mathrm{P}}{\mathrm{A}}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-3}}{\mathrm{~L}^{2}}=\mathrm{ML}^{\mathrm{o}} \mathrm{T}^{-3}$
(v) Energy $=\frac{1}{2} \mathrm{Mi}^{2} \Rightarrow[\mathrm{M}]=\frac{[\mathrm{E}]}{\left[\mathrm{i}^{2}\right]}=\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-2}$
(vi) $\frac{[\mathrm{U}]}{[\mathrm{V}]}=\frac{\left[\mathrm{B}^{2}\right]}{\left[2 \mu_{0}\right]}=\left[\mu_{0}\right]=\frac{\left[\mathrm{B}^{2}\right][\mathrm{V}]}{[\mathrm{U}]}$

Also, $\mathrm{F}=\mathrm{qVB} \Rightarrow \mathrm{B}=\frac{\mathrm{F}}{\mathrm{qv}}$

$$
\left[\mu_{0}\right]=\frac{(\mathrm{F})^{2}[\mathrm{~V}]}{\left[\mathrm{q}^{2} \mathrm{v}^{2}\right][\mathrm{U}]}=\mathrm{MLT}^{-2} \mathrm{~A}^{-2} \text { Ans. }
$$

NUMERICAL VALUE BASED

Q. $1 \quad 625$

$[\mathrm{E}]=\mathrm{mL}^{2} \mathrm{~T}^{-2}$

$$
\begin{aligned}
\mathrm{K}_{2}= & \mathrm{K}_{1}\left[\frac{\mathrm{~m}_{1}}{\mathrm{~m}_{2}}\right]^{\mathrm{a}}\left[\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right]^{\mathrm{b}}\left[\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right]^{\mathrm{c}} \\
& =10\left[\frac{1 \mathrm{~kg}}{100 \mathrm{gm}}\right]^{1}\left[\frac{1 \mathrm{~m}}{200 \mathrm{~cm}}\right]^{2}\left[\frac{1 \mathrm{sec}}{5 \mathrm{sec}}\right]^{2} \\
& =10\left[\frac{1000 \mathrm{gm}}{100 \mathrm{gm}}\right]\left[\frac{100 \mathrm{~cm}}{200 \mathrm{~cm}}\right]^{2}[5]^{2} \\
& =10 \times 10 \times \frac{1}{4} \times 25=625 \text { Ans. }
\end{aligned}
$$

$F \propto v^{a}$
$\propto \rho^{b}$
$\propto \mathrm{A}^{\mathrm{c}}$
$\Rightarrow \mathrm{F}=\mathrm{k} \mathrm{v}^{\mathrm{a}} \rho^{\mathrm{b}} \mathrm{A}^{\mathrm{c}} \quad \mathrm{k}$: dimensional constant.
By dimension analysis $\mathrm{a}=2 \Rightarrow \mathrm{~F} \propto \mathrm{v}^{2}$.
Q. 30008
$\mathrm{P}=\mathrm{k} \omega^{\mathrm{a}} \rho^{\mathrm{b}} \ell^{\mathrm{c}}$
$\Rightarrow \quad \mathrm{ML}^{2} \mathrm{~T}^{-3}=\left(\mathrm{T}^{-1}\right)^{\mathrm{a}}\left(\mathrm{ML}^{-3}\right)^{\mathrm{b}} \mathrm{L}^{\mathrm{c}}$
$\Rightarrow \quad \mathrm{a}=3$
$\therefore \mathrm{P} \propto \omega^{3}$
0002
$\left[\frac{\mathrm{at}^{\mathrm{x}}}{\mathrm{A}}\right]=1 \Rightarrow \frac{[\mathrm{a}][\mathrm{t}]^{\mathrm{x}}}{[\mathrm{s}]}=1 \Rightarrow \mathrm{x}=2$
Q. 5 [3]
$[\mathrm{V}]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{AT}}=\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}$

KVPY

PREVIOUS YEAR'S

Q. 1 (C)

$\sigma=h^{\alpha} \mathrm{k}_{\mathrm{B}}{ }^{\beta} \mathrm{c}^{\gamma}$
$\sigma \rightarrow$ Stefan boltzmann constant
$\mathrm{h} \rightarrow$ Planck's constant
$\mathrm{k}_{\mathrm{B}} \rightarrow$ Boltzmann constant
$\mathrm{c} \rightarrow$ speed of light
According to stefan's law
$\frac{\mathrm{Q}}{\mathrm{At}}=\sigma \mathrm{T}^{4}$
$\sigma=\frac{\mathrm{Q}}{\mathrm{At}} \times \frac{1}{\mathrm{~T}^{4}}$
$[\sigma]=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{2}\right][\mathrm{T}]\left[\mathrm{K}^{4}\right]}=\left[\mathrm{M}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-4}\right]$
$\& E=h v$
$\Rightarrow \mathrm{h}=\frac{\mathrm{E}}{v} \Rightarrow[\mathrm{~h}]=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}$
$[\mathrm{h}]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]$
$[\mathrm{c}]=\left[\mathrm{LT}^{-1}\right]$
$\mathrm{E}=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
$\Rightarrow \quad\left[\mathrm{k}_{\mathrm{B}}\right]=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{K}]}$
$\left[k_{B}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]$
According to homogeneity principle of dimension
$\left[\mathrm{M}^{1} \mathrm{~T}^{-3} \mathrm{~K}^{-4}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]^{\alpha}\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}\right]^{\beta}\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]^{\gamma}$
on comparing powers of $\mathrm{M}, \mathrm{L}, \mathrm{T}, \mathrm{K}$ on both sides

$$
\begin{array}{ll}
\Rightarrow \quad & \alpha+\beta=1 \\
& 2 \alpha+2 \beta+\gamma=0 \\
& -\alpha-2 \beta-\gamma=-3 \\
& -\beta=-4 \tag{4}\\
\Rightarrow \quad & \beta=4 \\
& \alpha=-3
\end{array}
$$

Putting values is equation (2)

$$
\begin{aligned}
& 2(-3)+2(4)+\gamma=0 \\
& \gamma=-2
\end{aligned}
$$

Ans.

$$
\begin{gathered}
\alpha=-3 \\
\beta=4 \\
\gamma=-2
\end{gathered}
$$

Q. 2
$\frac{\mathrm{V}}{\mathrm{t}}=\mathrm{k}\left(\frac{\mathrm{p}}{\ell}\right)^{\mathrm{a}} \eta^{\mathrm{b}} \mathrm{r}^{\mathrm{c}}$
$\mathrm{V} \rightarrow$ volume
$\mathrm{P} \rightarrow$ pressure
$\eta \rightarrow$ coefficient of viscosity
$r \rightarrow$ radius
Using dimensional analysis
$\left[M^{0} L^{3} T^{-1}\right]=\left[M^{1} L^{-2} \mathrm{~T}^{-2}\right]^{a}\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}\right]^{b}[\mathrm{~L}]^{\mathrm{c}}$
$\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{-1}\right]=\left[\mathrm{M}^{2+b} \mathrm{~L}^{-2 \mathrm{a}-\mathrm{bc} \mathrm{c}} \mathrm{T}^{-2 \mathrm{~L}-\mathrm{b}}\right]$
$\mathrm{a}+\mathrm{b}=0$
$-2 a-b+c=3$
$\mathrm{a}=-\mathrm{b}$
$-2 a-b=-1$
put the value of $-2 \mathrm{a}-\mathrm{b}=-1$ in equation (2)
$-1+\mathrm{c}=3$
$\mathrm{c}=4$
put $\mathrm{a}=-\mathrm{b}$ in equaiton (3)
$2 \mathrm{~b}-\mathrm{b}=-\mathrm{b}$ in equation (3)
and $\mathrm{a}=1$
hence option (A) is correct.
Q. 3 (B)
$\mathrm{A}=\mathrm{G}^{\alpha} \mathrm{M}^{\beta} \mathrm{C}^{\gamma}$
$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\right]=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{\alpha}\left[\mathrm{M}^{\beta}\left[\mathrm{LT}^{-1}\right]^{\gamma}\right.$
$-\alpha+\beta=0 \Rightarrow \alpha=\beta$
$3 \alpha+\gamma=2$
$-2 \alpha-\gamma=2$
on solving
$\alpha=2, \beta=2, \gamma=-4$
Q. 4 (A)
$\mathrm{P}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$

$$
\begin{aligned}
& \mu_{0}=\left[\mathrm{MLT}^{-2} \mathrm{~T}^{-2}\right] \\
& \mathrm{m}=\left[\mathrm{I} \mathrm{~L}^{2}\right] \\
& \omega=\left[\mathrm{T}^{-1}\right] \\
& \mathrm{C}=\left[\mathrm{LT}^{-1}\right]
\end{aligned}
$$

$\left.\therefore\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]=\left[\mathrm{MLT}^{-2} \mathrm{I}^{-2}\right]^{x}\right]\left[\left[\mathrm{LL}^{2}\right]^{y}\left[\mathrm{~T}^{-1}\right]^{\mathrm{z}}\left[\mathrm{LT}^{-1}\right]^{u}\right.$
$\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=4, \mathrm{u}=-3$
Q. 5 (C)
$\rho=\frac{E}{J}$
$\mathrm{E}=\left[\mathrm{ML} \mathrm{T}^{3} \mathrm{I}^{-1}\right]$
$\mathrm{J}=\left[\mathrm{IL}^{-2}\right]$
$\mathrm{h}=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
$\mathrm{m}_{\mathrm{e}}=\mathrm{M}$
$\mathrm{c}=\mathrm{LT}^{-1}$
$\varepsilon_{0}=\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{I}^{2}$
$\therefore \rho=\frac{\mathrm{h}^{2}}{\mathrm{~m}_{\mathrm{e}} \mathrm{ce}^{2}}$
Q. 6 (B)
$1^{\circ}=3600 \mathrm{arcsec}$
average change in orientation per year
$\frac{180^{\circ}}{10^{5}}$ degree/year
$\frac{180 \times 3600}{10^{5}} \mathrm{sec} / \mathrm{year}$
$=1.8 \times 0.36$
$=6.48 \mathrm{sec} / \mathrm{year}$
Closest option (B)
Q. 7 (D)
$\left[T^{\prime}\right]=\left[\begin{array}{ll}\mathrm{m}^{a} \mathrm{~L}^{-2} \mathrm{~T}^{-2 a} & \mathrm{~m}^{b} \mathrm{~L}^{-3 b} \mathrm{~m}^{c} \mathrm{~T}^{-2 \mathrm{c}}\end{array}\right]$
$\left[\mathrm{T}^{\prime}\right]=\left[\mathrm{m}^{2+b+c} \mathrm{~L}^{-\mathrm{a}-3 \mathrm{~b}} \mathrm{~T}^{-2 \mathrm{a}-2 \mathrm{c}}\right]$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=0$
$-a-3 b=0$
$-2 \mathrm{a}-2 \mathrm{c}=1$
On solving
$\mathrm{a}=\frac{-3}{2}, \mathrm{~b}=\frac{1}{2}, \mathrm{c}-1$
Q. 8 (A)

Precession mean
every time reading is coming nearly same.
Q. 9 (C)

Force $\mathrm{F}=10.0 \pm 0.2 \mathrm{~N}$
$\mathrm{a}=1.00 \pm 0.01 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma} \Rightarrow \mathrm{m}=\frac{\mathrm{F}}{\mathrm{a}}$
$\mathrm{m}=\frac{10.0}{1.00}$
$\mathrm{m}=10.0 \mathrm{~kg}$
For error $(\mathrm{F}=\mathrm{ma})$
$\mathrm{m}^{1} \mathrm{a}^{1} \mathrm{~F}^{-1}=$ const.
$\frac{\mathrm{dm}}{\mathrm{m}}+\frac{\mathrm{da}}{\mathrm{a}}-\frac{\mathrm{dF}}{\mathrm{F}}=0$
[Take log and differentiate]
$\frac{\Delta \mathrm{m}}{\mathrm{m}}=\left|\frac{\Delta \mathrm{F}}{\mathrm{F}}-\frac{\Delta \mathrm{a}}{\mathrm{a}}\right|_{\max }$
$\frac{\Delta \mathrm{m}}{\mathrm{m}}=\left|\frac{0.2}{10.0}+\frac{0.01}{1.00}\right|$
$\Delta \mathrm{m}=\frac{3}{100} \mathrm{~m}$
$\Delta \mathrm{m}=\frac{3}{100} \times 10 \mathrm{~kg}$
$\Delta \mathrm{m}=0.3 \mathrm{~kg}$
mass $m=(10.0 \pm 0.3 \mathrm{~kg})$

Q. 10 (C)

$\mathrm{A}=\ell \mathrm{B}$
$\mathrm{dA}=\ell \mathrm{dB}+\mathrm{B} \mathrm{d} \ell$
$\frac{\mathrm{dA}}{\mathrm{A}}=\frac{\ell \mathrm{dB}}{\ell \mathrm{B}}+\frac{\mathrm{Bd} \ell}{\ell \mathrm{B}}$
$\frac{\mathrm{dA}}{\mathrm{A}}=\frac{\mathrm{dB}}{\mathrm{B}}+\frac{\mathrm{d} \ell}{\ell}$
$=\frac{0.05}{3.05}+\frac{0.05}{3.95}$
$=0.016+0.012$
$=0.028 \times 12.05$
$\mathrm{dA}=0.33$
12.05 ± 0.34
Q. 11 (D)
$\mathrm{x}=0.3 \mathrm{~cm}-3 \times$ scale division of vernier calipers
$=0.3 \mathrm{~cm}-3 \times \frac{9}{100}$
$=\frac{30-27}{100}$
$=\frac{3}{100}$
$=0.03 \mathrm{~cm}$
Q. 12 (A)

In vernier Callipers, given that
10 V.S.D. $=11 \mathrm{~mm}$

1 V.S.D. $=\frac{11}{10} \mathrm{~mm}=1.1 \mathrm{~mm}$
L.C. $=\mid 1$ M.S.D. -1 V.S.D. |.

Magnitude of L.C. $=0.1 \mathrm{~mm}$
Q. 13 (A)

Student A : Length of scale $=25 \mathrm{~m}$ Least count $=0.5 \mathrm{~cm}=0.005 \mathrm{~m}$
Student A can measure the length of 9.5 m by using the scale only once so there will be an error of 0.005 m in 9.5 m
\therefore Relative error $=\frac{0.005}{9.5}=0.005$
Student B : Length of scale : $1 \mathrm{~m}=100 \mathrm{~cm}$
Least count $=0.05 \mathrm{~cm}$
To measure 9.5 m , student B has to use this meter scale atleast 10 times
\therefore Relative error $=\frac{0.05}{100} \times 10=0.005$
Student C : Length of scale : 1 foot $=30.48 \mathrm{~cm}$ Least count $=0.05 \mathrm{~cm}$
To measure 9.5 m , student C has to use this scale approximately 31 times
\therefore Relative error $=\frac{0.05}{30.48} \times 31=0.05 \mathrm{~cm}$
\therefore Relative error is least for Student A.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (1)
$\mathrm{KE}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
$\mathrm{P}=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
$\mathrm{h}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
$\mathrm{v}=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{C}^{-1}$
Q. 2 (4)
$\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{hc}}=\frac{\mathrm{Ke}^{2} \times \lambda^{2}}{\lambda^{2} \times \mathrm{hc}}=\frac{\mathrm{F} \times \lambda}{\mathrm{E}}=\frac{\mathrm{E}}{\mathrm{E}} ;$ dimension
less
Q. 3 (2)
$\frac{\beta \mathrm{x}^{2}}{\mathrm{KT}}$ is dimension less so $\mathrm{KT}=\beta \mathrm{x}^{2}$
$\Rightarrow \mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}=\beta \mathrm{L}^{2}$
$\beta=\mathrm{M}^{1} \mathrm{~T}^{-2}$
$\mathrm{w}=\alpha^{2} \times \beta$
$\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}=\alpha^{2} \times \mathrm{M}^{1} \mathrm{~T}^{-2}$
$\alpha=\mathrm{L}$
Q. 4 (4)

$$
\begin{aligned}
{[\lambda]=\frac{[\mathrm{C}]}{[\mathrm{V}]} } & =\frac{\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]}{\left[\mathrm{M}^{2} \mathrm{LT}^{-3} \mathrm{~A}^{-1}\right]} \\
& =\left[\mathrm{M}^{-3} \mathrm{~L}^{-3} \mathrm{~T}^{7} \mathrm{~A}^{3}\right]
\end{aligned}
$$

Q. 5 (1)
$\frac{x^{2}}{\alpha K T}=$ dimensionless
$\frac{\mathrm{L}^{2}}{\mathrm{KT}} \Rightarrow \alpha$
$\alpha \Rightarrow \frac{L^{2}}{\mathrm{~V}^{2} \mathrm{M}}=\mathrm{L}^{2} \mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{2}=\mathrm{M}^{-1} \mathrm{~T}^{2}$
work $=\alpha \cdot \beta^{2} \cdot$ (dimensionless)
$\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \cdot \mathrm{~L}^{1}=\mathrm{M}^{-1} \mathrm{~T}^{2} \beta^{2}$
$v=\sqrt{\frac{3 \mathrm{KT}}{\mathrm{M}}}$
$\frac{\mathrm{v}^{2} \cdot \mathrm{M}}{3}=\mathrm{KT}$
$\beta=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}$
Q. 6 [25]
$4 \mathrm{tT}=100 \times \frac{4}{3} \pi \mathrm{r}^{3}$
$=100 \times \frac{4 \pi}{3} \times \frac{3}{40 \pi} \times 10^{-9}=10^{-8} \mathrm{~cm}^{3}$
$\mathrm{t}_{\mathrm{T}}=25 \times 10^{-10} \mathrm{~cm}$
$=25 \times 10^{-12} \mathrm{~m}$
$\mathrm{t}_{0}=0.01 \mathrm{t}_{\mathrm{T}}=25 \times 10^{-14} \mathrm{~m}$
$=25$
Q. 7 (4)
Q. 8 (4)
Q. 9 [13]
Q. 10 (2)
Q. 11 (1)
Q. 12 (1)
Q. 13 (1)
Q. 14 (2)
Q. 15 (4)
$\mathrm{E}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
$\mathrm{L}=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
$\mathrm{m}=\mathrm{M}$
$\mathrm{G}=\mathrm{M}^{-1} \mathrm{~L}^{+3} \mathrm{~T}^{-2}$
$\mathrm{P}=\frac{\mathrm{EL}^{2}}{\mathrm{M}^{5} \mathrm{G}^{2}}$
$[P]=\frac{\left(\mathrm{ML}^{2} \mathrm{~T}^{-2}\right)\left(\mathrm{M}^{2} \mathrm{~L}^{4} \mathrm{~T}^{-2}\right)}{\mathrm{M}^{5}\left(\mathrm{M}^{-2} \mathrm{~L}^{6} \mathrm{~T}^{-4}\right)}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$

Q. 16 (3)

Least count (L.C) $=\frac{0.5}{50}$
True reading $=5+\frac{0.5}{50} \times 20-\frac{0.5}{50} \times 5$
$=5+\frac{0.5}{50}(15)=5.15 \mathrm{~mm}$
Option (3)
Q. 17 (1)
Q. 18 [52]
$9 \mathrm{MSD}=10 \mathrm{VSD}$
$9 \times 1 \mathrm{~mm}=10 \mathrm{VSD}$
$\therefore 1 \mathrm{VSD}=0.9 \mathrm{~mm}$
$\mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD}=0.1 \mathrm{~mm}$
Reading $=$ MSR + VSR \times LC
$10+8 \times 0.1=10.8 \mathrm{~mm}$
Actual reading $=10.8-0.4=10.4 \mathrm{~mm}$
radius $=\frac{\mathrm{d}}{2}=\frac{10.4}{2}=5.2 \mathrm{~mm}$
$=52 \times 10^{-2} \mathrm{~cm}$
Q. 19 (2)
$[\mathrm{M}]=\mathrm{K}[\mathrm{F}]^{\mathrm{a}}[\mathrm{T}]^{\mathrm{b}}[\mathrm{V}]^{\mathrm{c}}$
$\left[\mathrm{M}^{1}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]^{\mathrm{a}}\left[\mathrm{T}^{1}\right]^{\mathrm{b}}\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]^{\mathrm{c}}$
$\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=-1$
$\therefore[\mathrm{M}]=\left[\mathrm{FTV}^{-1}\right]$
Q. 20 (1)
Q. 21 (3)
Q. 22 (1)
Q. 23 (3)
least count $=\frac{1}{100} \mathrm{~mm}$.

+ ve error $=+0.08 \mathrm{~mm}$.
Measured reading (Diameter)
$=1 \mathrm{~mm}+\left(72 \times \frac{1}{100}\right) \mathrm{mm}$
Original (True reading) $=1.72-0.08=1.64 \mathrm{~mm}$
So original radius $=0.82 \mathrm{~mm}$.
Q. 24 (3)

$$
\begin{aligned}
& \mathrm{T}^{2}=4 \pi^{2}\left[\frac{\ell}{\mathrm{~g}}\right] \\
& \mathrm{g}=4 \pi^{2}\left[\frac{\ell}{\mathrm{~g}}\right] \\
& \frac{\Delta \mathrm{g}}{\mathrm{~g}}=\frac{\Delta \ell}{\ell}+\frac{2 \Delta \mathrm{~T}}{\mathrm{~T}} \\
& =\left[\frac{1 \mathrm{~mm}}{1 \mathrm{~m}}+\frac{2\left(10 \times 10^{-3}\right)}{1.95}\right] \times 100 \\
& =1.12 \%
\end{aligned}
$$

Q. 25 (4)

$$
\begin{aligned}
& (\mathrm{n}-1) \mathrm{a}=\mathrm{n}\left(\mathrm{a}^{\prime}\right) \\
& \mathrm{a}^{\prime}=\frac{(\mathrm{n}-1) \mathrm{a}}{\mathrm{n}}
\end{aligned}
$$

$$
\therefore \text { L.C. }=1 \text { MSD }-1 \text { VSD }
$$

$$
=\left(\mathrm{a}-\mathrm{a}^{\prime}\right) \mathrm{cm}
$$

$$
a^{\prime}-\frac{(n-1) a}{n}
$$

$$
=\frac{\mathrm{na}-\mathrm{na}+\mathrm{a}}{\mathrm{n}}=\frac{\mathrm{a}}{\mathrm{n}} \mathrm{~cm}
$$

$$
\left(\frac{10 \mathrm{a}}{\mathrm{n}}\right) \mathrm{mm}
$$

Q. 26 [5]
$\frac{\Lambda \mathrm{R}}{\mathrm{R}} \times 100=\frac{\Lambda \mathrm{V}}{\mathrm{V}}=100+\frac{\Lambda \mathrm{I}}{\mathrm{I}} \times 100$
$\%$ error in $\mathrm{R}=\frac{2}{50} \times 100+\frac{0.2}{20} \times 100$
\% error in $\mathrm{R}=4+1$
\% error in $\mathrm{R}=5 \%$
Q. 27 (4)

$$
\begin{aligned}
& \mathrm{Y}=\frac{\text { Stress }}{\text { Strain }}=\frac{\mathrm{FL}}{\mathrm{Al}}=\frac{\mathrm{mg} \cdot \mathrm{~L}}{\pi \mathrm{R}^{2} \cdot \ell} \\
& \frac{\Delta \mathrm{Y}}{\mathrm{Y}}=\frac{\Delta \mathrm{m}}{\mathrm{~m}}+\frac{\Delta \mathrm{L}}{\mathrm{~L}}+2 \cdot \frac{\Delta \mathrm{R}}{\mathrm{R}}+\frac{\Delta \ell}{\ell} \\
& \frac{\Delta \mathrm{Y}}{\mathrm{Y}} \times 100=100\left[\frac{1}{1000}+\frac{1}{1000}+2\left(\frac{0.001}{0.2}\right)+\frac{0.001}{0.5}\right] \\
& \quad=\frac{1}{10}+\frac{1}{10}+1+\frac{1}{5}=\frac{14}{10}=1.4 \%
\end{aligned}
$$

Q. 28 (2)

Positive zero error $=0.2 \mathrm{~mm}$
Main scale reading $=8.5 \mathrm{~cm}$
Vernier scale reading $=6 \times 0.01=0.06 \mathrm{~cm}$
Final reading $=8.5+0.06-0.02=8.54 \mathrm{~cm}$
Q. 29 (2)
$\gamma=\frac{4 \pi^{2} \ell}{\mathrm{~T}^{2}}$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{\Delta \ell}{\ell}+2 \frac{\Delta \mathrm{~T}}{\mathrm{~T}}=\frac{0.1}{10}+2\left(\frac{\frac{1}{200}}{0.5}\right)$
$\frac{\Delta \mathrm{g}}{\mathrm{g}}=\frac{1}{100}+\frac{1}{50}$
$\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100=3 \%$
Q. 30 (1)
$R=\frac{\rho \ell}{A}=\frac{V}{I}$
$\rho=\frac{\mathrm{AV}}{\mathrm{I} \ell}=\frac{\pi \mathrm{d}^{2} \mathrm{~V}}{4 \mathrm{I} \ell} \quad\left(\mathrm{A}=\frac{\pi \mathrm{d}^{2}}{4}\right)$
$\therefore \quad \frac{\Delta \rho}{\rho}=\frac{2 \Delta \mathrm{~d}}{\mathrm{~d}}+\frac{\Delta \mathrm{V}}{\mathrm{V}}+\frac{\Delta \mathrm{I}}{\mathrm{I}}+\frac{\Delta \ell}{\ell}$
$\frac{\Delta \rho}{\rho}=2\left(\frac{0.01}{5.00}\right)+\frac{0.1}{5.0}+\frac{0.01}{2.00}+\frac{0.1}{10.0}$
$\frac{\Delta \rho}{\rho}=0.004+0.02+0.005+0.01$
$\frac{\Delta \rho}{\rho}=0.039$
$\%$ error $=\frac{\Delta \rho}{\rho} \times 100=0.039 \times 100=3.90 \%$

Q. 31 [34]

$\mathrm{Qv}=\frac{4}{3} \pi \mathrm{r}^{3}$
taking $\log \&$ then differentiate
$\frac{\mathrm{dV}}{\mathrm{V}}=3 \frac{\mathrm{dr}}{\mathrm{r}}$
$=\frac{3 \times 0.85}{7.5}, 100 \%=34 \%$
Q. 32 (1)
Q. 33 (1)
Q. 34 (3)
$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$
$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{4}+\frac{1}{4} \Rightarrow \mathrm{R}_{\mathrm{eq}}=2 \Omega$
Q. 5
(D)

We have $\quad C=\frac{1}{\sqrt{\mu_{0} \in_{0}}} \therefore\left[C^{2}\right]=\left[\frac{1}{\mu_{0} \in_{0}}\right]$
$\Rightarrow \mathrm{L}^{2} \mathrm{~T}^{-2}=\frac{1}{\left[\mu_{0}\right]\left[\epsilon_{0}\right]}$
$\Rightarrow\left[\mu_{0}\right]=\left[\mu_{0}\right]=\left[\epsilon_{0}\right]^{-1}[\mathrm{~L}]^{-2}[\mathrm{~T}]^{2}$
Q. 6 (A,B,D)

Mass $=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
$\mathrm{MVr}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
$\mathrm{M}^{0} \frac{\mathrm{~L}^{1}}{\mathrm{~T}^{1}} . \mathrm{L}^{1}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
$\mathrm{L}^{2}=\mathrm{T}^{1}$
Force $=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \quad$ (in SI)
$=\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~L}^{-4} \quad$ (In new system from equa-
tion (1))
$=\mathrm{L}^{-3}$
Energy $=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
(In SI)
$=\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~L}^{-4} \quad$ (In new system from equation (1))
$=\mathrm{L}^{-2}$
Power $=\frac{\text { Energy }}{\text { Time }}$
$=\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3}$
(in SI)
$=\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~L}^{-6}$
(In new system from equa-
tion (1))
$=L^{-4}$
Linear momentum $=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-1}$ (in SI)
$=M^{0} L^{1} L^{-2}$
tion(1))
$=\mathrm{L}^{-1}$
(In new system from equa-
$0=a+b$
$1=-3 a \Rightarrow a=-\frac{1}{3}$
So $\quad \mathrm{b}=\frac{1}{3} \quad \Rightarrow \mathrm{n}=3$
Q. 3 (B,D)
$\left[k_{B} T\right]=[F l]$
$\&\left[\frac{q^{2}}{\epsilon}\right]=\left[F l^{2}\right]$
Q. 4 (C)

We have $\frac{E}{C}=B$
$\therefore[B]=\frac{[E]}{[C]}=[E] L^{-1} T^{1} \quad \Rightarrow[E]=[B][L][T]^{-1}$
(r) $\mathrm{E}=\mathrm{h} \nu \Rightarrow \mathrm{ML}^{2} \mathrm{~T}^{2}=[\mathrm{h}] \mathrm{T}^{-1} \Rightarrow[\mathrm{~h}]=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
(s) $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{kA} \Delta \theta}{\ell} \Rightarrow[\mathrm{k}]=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~L}}{\mathrm{~L}^{2} \mathrm{~K}}=\mathrm{MLT}^{-3} \mathrm{~K}^{-1}$
Q. 2 [3]
$\mathrm{d}=\mathrm{k}(\rho)^{\mathrm{a}}(\mathrm{S})^{\mathrm{b}}(\mathrm{f})^{\mathrm{c}}$
$\left[\frac{\mathrm{M}}{\mathrm{L}^{3}}\right]^{\mathrm{a}}\left[\frac{\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{2} \mathrm{~T}}\right]^{\mathrm{b}}\left[\frac{1}{\mathrm{~T}}\right]^{\mathrm{c}}$
Q. 7 (A, B)

Given $\mathrm{L}=\mathrm{x}^{\alpha}$
$\mathrm{LT}^{-1}=\mathrm{x}^{\beta}$
$\mathrm{LT}^{-2}=\mathrm{x}^{\mathrm{p}}$
$M L T^{-2}=\mathrm{x}^{\mathrm{r}}$
$\frac{(1)}{(2)} \Rightarrow \mathrm{T}=\mathrm{x}^{\alpha-\beta}$
From (3)
$\frac{x^{\alpha}}{x^{2(\alpha-\beta)}}=x^{p}$
$\Rightarrow \alpha+\mathrm{p}=2 \beta$
(A)

From (4)
$\mathrm{M}=\mathrm{x}^{\mathrm{q}-\beta}$
From (5) $x^{q}=x^{\mathrm{r}} \mathrm{x}^{\alpha-\beta}$
$\alpha+r-q=\beta$
Replacing value ' α ' in equation (6) from (A)
$2 \beta-p+r-q=\beta$
$\Rightarrow \mathrm{p}+\mathrm{q}-\mathrm{r}=\beta$
Replacing value of ' β ' in equation (6) from (A) $2 \alpha+2 r-2 q=\alpha+p$ $\alpha=p+2 q-2 r$
Q. 8 (BD)
Q. 9 (D)

$20 \mathrm{VSD}=16 \mathrm{MCD}$
$1 \mathrm{VSD}=0.8 \mathrm{MSD}$
Least count MSD - VSD

$$
\begin{aligned}
& =1 \mathrm{~mm}-0.8 \mathrm{~mm} \\
& =0.2 \mathrm{~mm}
\end{aligned}
$$

Q. 10 (B)

$\ell_{1}=52+1=53 \mathrm{~cm}$
$\ell_{2}=48+2=50 \mathrm{~cm}$
$\frac{\ell_{1}}{\ell_{2}}=\frac{\mathrm{x}}{\mathrm{R}} \Rightarrow \frac{53}{50}=\frac{\mathrm{x}}{10}$
$\mathrm{x}=10.6 \Omega$
Q. 11 (C)

Least count $=\frac{0.5}{50}=0.01 \mathrm{~mm}$
Diameter of ball $\mathrm{D}=2.5 \mathrm{~mm}+(20)(0.01)$
$\mathrm{D}=2.7 \mathrm{~mm}$
$\rho=\frac{\mathrm{M}}{\mathrm{vol}}=\frac{\mathrm{M}}{\frac{4}{3} \pi\left(\frac{\mathrm{D}}{2}\right)^{3}}$
$\left(\frac{\Delta \rho}{\rho}\right)_{\max }=\frac{\Delta \mathrm{m}}{\mathrm{m}}+3 \frac{\Delta \mathrm{D}}{\mathrm{D}} ;\left(\frac{\Delta \rho}{\rho}\right)_{\max }$
$=2 \%+3\left(\frac{0.01}{2.7}\right) \times 100 \%$
$\frac{\Delta \rho}{\rho}=3.1 \%$
Q. 12 (A)
$\Delta \mathrm{d}=\Delta \ell=\frac{0.5}{100} \mathrm{~mm}$
$\mathrm{y}=\frac{4 \mathrm{MLg}}{\pi \ell \mathrm{d}^{2}}$
$\left(\frac{\Delta \mathrm{y}}{\mathrm{y}}\right)_{\max }=\frac{\Delta \ell}{\ell}+2 \frac{\Delta \mathrm{~d}}{\mathrm{~d}}$
error due to ℓ measurement $\quad \frac{\Delta \ell}{\ell}=\frac{0.5 / 100 \mathrm{~mm}}{0.25 \mathrm{~mm}}$
error due to d measurement
$2 \frac{\Delta \mathrm{~d}}{\mathrm{~d}}=\frac{2 \times \frac{0.5}{100}}{0.5 \mathrm{~mm}}=\frac{0.5 / 100}{0.25}$
So error in y due to ℓ measurement $=$ error in y due to d measurement
Q. 13 (B)
$50 \mathrm{VSD}=2.45 \mathrm{~cm}$
$1 \mathrm{VSD}=\frac{2.45}{50} \mathrm{~cm}=0.049 \mathrm{~cm}$
Least count of vernier $=1 \mathrm{MSD}-1 \mathrm{VSD}$

$$
\begin{aligned}
& =0.05 \mathrm{~cm}-0.049 \mathrm{~cm} \\
& =0.001 \mathrm{~cm}
\end{aligned}
$$

Thickness of the object $=$ Main scale reading + vernier scale reading \times least count

$$
\begin{aligned}
& =5.10+(24)(0.001) \\
& =5.124 \mathrm{~cm} .
\end{aligned}
$$

Q. 14 (A,B,D)

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{7}{5} \frac{(R-r)}{g}} \\
& \ln T=\ln 2 \pi \sqrt{\frac{7}{5}}+\frac{1}{2} \ln (R-r)+\frac{1}{2} \ln g \\
& \frac{\Delta g}{g}=2 \frac{\Delta T}{T}+\frac{\Delta R+\Delta r}{R-r} \\
& \begin{aligned}
& \frac{\Delta g}{g} \times 100=\left(2 \times \frac{0.02}{0.556}+\frac{1+1}{60-10}\right) \times 100 \\
& \quad=11.2 \% \simeq 11 \%
\end{aligned}
\end{aligned}
$$

$$
\frac{\Delta r}{r} \times 100=\frac{1}{10} \times 100=10 \%
$$

$$
\frac{\Delta T}{T} \times 100=\frac{0.02}{0.556} \times 100=3.57 \%
$$

Hence, (a, b, d)
Q. 15 (D)
$2 \mathrm{~d} \sin \theta=\lambda$
$d=\frac{\lambda}{2 \sin \theta}$
differntiate
$\partial(\mathrm{d})=\frac{\lambda}{2} \partial(\operatorname{cosec} \theta)$
$\partial(d)=\frac{\lambda}{2}(-\operatorname{cosec} \theta \cot \theta) \partial \theta$
$\partial(\mathrm{d})=\frac{-\lambda \cos \theta}{2 \sin ^{2} \theta} \partial \theta$
as $\theta=$ increases, $\frac{\lambda \cos \theta}{2 \sin ^{2} \theta}$ decreases

2nd Method

$d=\frac{\lambda}{2 \sin \theta}$
$\ell \mathrm{nd}=\ell \mathrm{n} \lambda-\ell \mathrm{n} 2-\ell \mathrm{n} \sin \theta$
$\frac{\Delta(\mathrm{d})}{\mathrm{d}}=0-0-\frac{1}{\sin \theta} \times \cos \theta(\Delta \theta)$
Fractional error $|+(\mathrm{d})|=|\cot \theta \Delta \theta|$
Absoulute error $\Delta \mathrm{d}=(\mathrm{d} \cot \theta) \Delta \theta$
$\frac{d}{2 \sin \theta} \times \frac{\cos \theta}{\sin \theta}$
$\Delta d=\frac{\cos \theta}{\sin ^{2} \theta}$

Q. 16 [8]

Observation - 1
Let weight used is W_{1}, extension ℓ_{1}
$y=\frac{W_{1} / A}{\ell_{1} / L} \Rightarrow W_{1}=\frac{y A \ell_{1}}{L}$

$$
\ell_{1}=3.2 \times 10^{-2}+
$$

20×10^{-5}
Observation - 2
Let weight used is $\mathrm{W}_{2} \quad$ extension ℓ_{2}
$y=\frac{W_{2} / A}{\ell_{2} / L} \Rightarrow W_{1}=\frac{y A \ell_{2}}{L}$
45×10^{-5}
$W_{2}-W_{1}=\frac{y A}{L}\left(\ell_{2}-\ell_{1}\right) \Rightarrow y=\frac{\left(W_{2}-W_{1}\right) / L}{y A\left(\ell_{2}-\ell_{1}\right)}$
$\left(\frac{\Delta y}{y}\right)_{\max }=\frac{\Delta \ell_{2}+\Delta \ell_{1}}{\ell_{2}-\ell_{1}}=\frac{2 \times 10^{-5}}{25 \times 10^{-5}}$
$\left(\frac{\Delta \mathrm{y}}{\mathrm{y}}\right)_{\max } \times 100 \%=\frac{2}{25} \times 100 \%=8 \%$
Q. 17 (D)
$R_{1}=2.8+0.01 \times 7=2.87$
$R_{2}=2.8+(8 \mathrm{MSD}-7 \mathrm{VSD})=2.8+(8 \times 0.1-7 \times$
$\left.\frac{11}{10}\right)=2.83$
Q. 18 (D)
$t=\sqrt{\frac{L}{5}}+\frac{L}{300}$
$\mathrm{dt}=\mathrm{t}=\frac{1}{\sqrt{5}} \frac{1}{2} \mathrm{~L}^{-1 / 2} \mathrm{dL}+\left(\frac{1}{300} \mathrm{dL}\right)$
$\mathrm{dt}=\frac{1}{2 \sqrt{5}} \frac{1}{\sqrt{20}} \mathrm{dL}+\frac{\mathrm{dL}}{300}=0.01$
$\mathrm{dL}\left(\frac{1}{20}+\frac{1}{300}\right)=0.01$
$\mathrm{dL}\left[\frac{15}{300}\right]=0.01$
$\mathrm{dL}=\frac{3}{16}$
$\frac{\mathrm{dL}}{\mathrm{L}} \times 100=\frac{3}{16} \times \frac{1}{20} \times 100=\frac{15}{16} \simeq 1 \%$
Q. 19 (B)
$r=\frac{(1-a)}{(1+a)}$
$\frac{\Delta(1-\mathrm{a})}{(1-\mathrm{a})}+\frac{\Delta(1+\mathrm{a})}{(1+\mathrm{a})}$
$=\frac{\Delta \mathrm{a}}{(1-\mathrm{a})}+\frac{\Delta \mathrm{a}}{(1+\mathrm{a})}$
$=\frac{\Delta \mathrm{a}(1+\mathrm{a}+1-\mathrm{a})}{(1-\mathrm{a})(1+\mathrm{a})}$
$\therefore \Delta r=\frac{2 \Delta a}{(1-a)(1+a)} \frac{(1-a)}{(1+a)}=\frac{2 \Delta a}{(1+a)^{2}}$
Q. 20 (C)
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t}$
$\ln \mathrm{N}=\ln \mathrm{N}_{\mathrm{o}}-\lambda \mathrm{t}$
$\frac{d N}{N}=-d \lambda t$
Converting to erros.
$\frac{\Delta \mathrm{N}}{\mathrm{N}}=\Delta \lambda \mathrm{t}$
$\therefore \Delta \lambda=\frac{40}{2000 \times \mathrm{L}}=0.02$
(N is number of nuclei left undecayed.)
Q. $21 \quad[3.00]$
$\mathrm{d}=0.5 \mathrm{~mm} \quad \mathrm{Y}=2 \times 10^{11} \quad \ell=1 \mathrm{~m}$
$\Delta \ell=\frac{\mathrm{F} \ell}{\mathrm{Ay}}=\frac{\mathrm{mg} \ell}{\frac{\pi \mathrm{d}^{2}}{4} \mathrm{y}}=\frac{1.2 \times 10 \times 1}{\frac{\pi}{4} \times\left(5 \times 10^{-4}\right)^{2} \times 2 \times 10^{11}}$
$\Delta \ell=\frac{1.2 \times 10}{\frac{3.2}{4} \times 25 \times 10^{-8} \times 2 \times 10^{11}}$
$=\frac{12}{0.8 \times 25 \times 2 \times 10^{3}}=\frac{12}{40 \times 10^{3}}=0.3 \mathrm{~mm}$
so $3{ }^{\text {rd }}$ division of vernier scale will coincicle with main scale.
Q. 22 [1.30]
$\mathrm{U}=\frac{1}{2} \frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}} \mathrm{~V}^{2}$
Let $\mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{C}_{1} \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$
$\frac{1}{\mathrm{C}_{\text {eq }} \pm \Delta \mathrm{C}_{\text {eq }}}=\frac{1}{\mathrm{C}_{1} \pm \Delta \mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2} \pm \Delta \mathrm{C}_{2}}$
$\Rightarrow \mathrm{C}_{\text {eq }} \pm \Delta \mathrm{C}_{\text {eq }} \simeq \frac{\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{1} \Delta \mathrm{C}_{2}+\mathrm{C}_{2} \Delta \mathrm{C}_{1}}{\mathrm{C}_{1}+\mathrm{C}_{2}+\Delta \mathrm{C}_{1}+\Delta \mathrm{C}_{2}}$
$=\frac{1200\left(1 \pm \frac{12}{1200}\right)}{\left(1 \pm \frac{25}{5000}\right)}$
$=1200\left[1 \pm\left(\frac{1}{100}-\frac{1}{200}\right)\right]$
$\frac{\Delta \mathrm{U}}{\mathrm{U}} \times 100=\frac{\Delta \mathrm{C}_{\text {eq }}}{\mathrm{C}_{\text {eq }}} \times 100+\frac{2 \Delta \mathrm{~V}}{\mathrm{~V}} \times 100$
$=\frac{1}{200} \times 100+2 \times \frac{0.02}{5} \times 100$
$=1.3 \%$
Q. 23 (C)

Given 10 VSD $=9$ MSD
Here MSD \rightarrow Main scale division
$1 \mathrm{VSD}=\frac{9}{10} \mathrm{MSD}$
VSD \rightarrow Vernier Scale division
Least count $=1$ MSD -1 VSD
$=\left(1-\frac{9}{10}\right) \mathrm{MSD}$
$=0.1 \mathrm{MSD}$
$=0.1 \times 0.1 \mathrm{~cm}$
$=0.01 \mathrm{~cm}$
As '0' of V.S. lie before '0' of M.S.
Zero error $=-[10-6]$ L.C.
$=-4 \times 0.01 \mathrm{~cm}$
$=-0.04 \mathrm{~cm}$
Reading $=3.1 \mathrm{~cm}+1 \times$ LC
$=3.4 \mathrm{~cm}+1 \times 0.01 \mathrm{~cm}$
$=3.11 \mathrm{~cm}$
True diameter $=$ Reading - Zero error
$=3.11-(-0.04) \mathrm{cm}=3.15 \mathrm{~cm}$

Vector and Calculus

EXERCISES

JEE-MAIN
 OBJECTIVE QUESTIONS

Q. 1

Q. 2

$$
\begin{aligned}
& \text { (2) } \\
& |\mathrm{P}-\mathrm{Q}| \leq \mathrm{R} \leq|\mathrm{P}+\mathrm{Q}| \\
& \text { If } \mathrm{P}=10 \mathrm{~N} \& \mathrm{Q}=6 \mathrm{~N} \\
& 4 \leq \mathrm{R} \leq 16
\end{aligned}
$$

Q. 3 (4)

Initial \& final position are coincide.
Q. 4 (4)
$\mathrm{R}_{\text {min }}=|\mathrm{P}-\mathrm{Q}|$
When angle between $\mathrm{P} \& \mathrm{Q}$ is 180°.
Q. 5 (1)
$\mathrm{R}_{\text {max }}=(\mathrm{P}+\mathrm{Q})$
When angle between $\mathrm{P} \& \mathrm{Q}$ is 0°
Q. 6 (3)
$\mathrm{R}^{2}=\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \mathrm{PQ} \cos \theta$
$\mathrm{R}=13$
$\mathrm{P}=5$
$\mathrm{Q}=12$
$\cos \theta=0$
$\theta=\frac{\theta}{2}$
Q. 7 (1)

Now direction one interchanged

Change in direction but angle between $A \& B$ is change so no change in magnitude.
Q. 8 (4)

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{Q}}=\overrightarrow{\mathrm{P}}-\overrightarrow{\mathrm{Q}} \\
& \overrightarrow{\mathrm{Q} \mathrm{Q}}=0 \\
& \overrightarrow{\mathrm{Q}}=0 \\
& \mid \overrightarrow{\mathrm{Q}}=0
\end{aligned}
$$

Q. 9 (4)
Q. 10 (3)

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}} \\
& =\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}
\end{aligned}
$$

Q. 11 (1)

$$
2 \hat{i}-3 \hat{j} \quad \overrightarrow{\mathrm{~F}}=\mathrm{F}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{F}_{\mathrm{y}} \hat{\mathrm{j}}
$$

Q. 12 (4)

$$
\begin{array}{ll}
\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{~B}}=0 & -\mathrm{A} \perp \mathrm{~B} \\
\overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{C}}=0 & -\mathrm{A} \perp \mathrm{C}
\end{array}
$$

If may be possible
$\mathrm{A} \perp \mathrm{B} \perp \mathrm{C}$
Than A must be perpendicular to $\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{C}}$.
Q. 13 (2)
$\mathrm{AB} \cos \theta=8$
$\mathrm{AB} \sin \theta=8 \sqrt{3}$
$\tan \theta=\sqrt{3}$
$\theta=60^{\circ}$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (1)
θ will increase plan $\cos \theta$ will decreases.
Q. 2 (2)

Net displacement must be zero.
Q. 3 (2)

$$
|\mathrm{P}-\mathrm{Q}| \leq \mathrm{R} \leq(\mathrm{P}+\mathrm{Q})
$$

Q. 4
$|\overline{\mathrm{A}}+\overline{\mathrm{B}}|=\overline{\mathrm{A}}=\overline{\mathrm{B}}$
$\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta=\mathrm{A}^{2}$
$2 \mathrm{~A}^{2}+2 \mathrm{~A}^{2} \cos \theta^{\circ}=\mathrm{A}^{2}$
$2 \mathrm{~A}^{2}+2 \mathrm{~A}^{2} \cos \theta^{\circ}=\mathrm{A}^{2}$
$2 \cos \theta=-1$
$\cos \theta=-\frac{1}{2}$
$\theta=120^{\circ}$
Q. 5 (1)

$\overline{\mathrm{a}}+\overline{\mathrm{b}}=-\overline{\mathrm{c}}$
$c^{2}=a^{2}+b^{2}+2 a b \cos \theta$
$\bar{a}=\bar{b}$
$c=\sqrt{2} a=\sqrt{2} b$
$\theta=90^{\circ}$
Q. 6

Resulting of $\overline{\mathrm{A}} \& \overline{\mathrm{~B}}$ also have same unit 2 cm .
Q. 7 (1)

By polygon law for vector addition.
Q. 8 (3)
$\mathrm{R}^{2}=\mathrm{P}^{2}+\mathrm{Q}^{2}+2 \mathrm{PQ} \cos 60^{\circ}$
$7 \mathrm{Q}^{2}=\mathrm{P}^{2}+\mathrm{Q}^{2}+\mathrm{PQ} \Rightarrow \mathrm{P}^{2}-6 \mathrm{Q}^{2}+\mathrm{PQ}=0$
$\left(\frac{\mathrm{P}}{\mathrm{Q}}\right)^{2}+\left(\frac{\mathrm{Q}}{\mathrm{Q}}\right)-6=0$
$\Rightarrow\left(\frac{\mathrm{P}}{\mathrm{Q}}+3\right)\left(\frac{\mathrm{P}}{\mathrm{Q}}-2\right)=0 \Rightarrow \frac{\mathrm{P}}{\mathrm{Q}}=2$
Q. 9 (2)

Displacement $=0$
Q. 10 (4)

$\frac{\mathrm{P}}{\sin 120^{\circ}}=\frac{\mathrm{Q}}{\sin 90^{\circ}}=\frac{\mathrm{R}}{\sin 150^{\circ}}$
$\frac{\mathrm{P}}{\sqrt{3 / 2}}=\frac{\theta}{1}=\frac{\mathrm{R}}{\frac{1}{2}}$

$$
\mathrm{P}: \mathrm{Q} R=\sqrt{3}: 2: 1
$$

Q. 11 (4)
$\vec{A}=\hat{i}-2 \hat{j}+3 \hat{k}$
$\vec{B}=4 \hat{i}+2 \hat{j}+3 \hat{k} \Rightarrow \overrightarrow{A B}=3 \hat{i}+4 \hat{j}$

$$
\hat{\mathrm{AB}}=\frac{3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{5} \Rightarrow \overrightarrow{\mathrm{~V}}=10\left(\frac{3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{5}\right)=6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}
$$

Q. 12 (4)
$\left|\overrightarrow{\mathrm{F}}_{2}\right|=\left|\overrightarrow{\mathrm{F}}_{2}\right|$
Q. 16 (2)

$$
\tan \alpha=\frac{\mathrm{F}_{2} \sin \theta}{\mathrm{~F}_{1}+\mathrm{F}_{2} \cos \theta} \Rightarrow \alpha=90^{\circ}
$$

then $\mathrm{F}_{1}+\mathrm{F}_{2} \cos \theta=0 \Rightarrow \cos \theta=-\frac{1}{2}$
$\theta=120^{\circ}$
Q. 13 (1)
$\left|\overrightarrow{\mathrm{F}}_{1}\right|=\left|\overrightarrow{\mathrm{F}}_{2}\right|=$ dyne $\Rightarrow \theta=120^{\circ}$
$|\overrightarrow{\mathrm{F}}|=2\left|\overrightarrow{\mathrm{~F}}_{1}\right| \cos \theta / 2 \Rightarrow 10$ dyne
Q. 14 (1)

Displacement $\mathrm{BC}=\sqrt{\mathrm{AB}^{2}+\mathrm{AC}^{2}}$
$\sqrt{(r-r \cos \theta)^{2}+r^{2} \sin ^{2} \theta}$
$\mathrm{BC}=2 \mathrm{r} \sin \theta / 2$

Q. 15 (1)

Angle $\mathrm{b} / \mathrm{w} \overrightarrow{\mathrm{P}} \& \vec{\theta}$ is 0
so Resultant $=\sqrt{\mathrm{P}^{2}+\theta^{2}+2 \mathrm{PQ} \cos \theta}$
$|\overrightarrow{\mathrm{R}}|=\mathrm{P}+\mathrm{Q}$

$\mathrm{OD}^{2}=\mathrm{OE}^{2}+\mathrm{ED}^{2} \Rightarrow \mathrm{OD}=\sqrt{3^{2}+4^{2}}=5$ miles
Q. 17 (2)

$$
\overrightarrow{\Delta_{v}}=\overrightarrow{v_{f}}-\overrightarrow{v_{i}}
$$

$$
\left|v_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}\right|=50 \sqrt{2}
$$

Q. 18 (1)

$$
\mathrm{P}^{2}=\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+2 \mathrm{~F}_{1} \mathrm{~F}_{2} \cos \theta
$$

$$
\begin{aligned}
& \mathrm{Q}^{2}=\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}-2 \mathrm{~F}_{1} \mathrm{~F}_{2} \cos \theta \\
& \mathrm{P}^{2}+\mathrm{Q}^{2}=2\left(\mathrm{~F}_{1}^{2}+\mathrm{F}_{2}^{2}\right)
\end{aligned}
$$

Q. 19 (2)
$|\hat{\mathrm{a}}-\hat{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \cos \theta}$

$\theta=60^{\circ} \Rightarrow|\hat{a}-\hat{b}|=1$
(4)

Start from A to F
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{CB}^{2}$
$\mathrm{AC}^{2}=10^{2}+12^{2}$
$\mathrm{AC}^{2}=100+144=244$
$\mathrm{AF}^{2}=\mathrm{AC}^{2}+\mathrm{CF}^{2}=244+196$
$\mathrm{AF}^{2}=440$
$\mathrm{AF}=20.99 \simeq 21$
Q. 21 (3)
$\overline{\mathrm{A}}+\overline{\mathrm{B}}=7 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
$|A+B|=\sqrt{4 a+9}=\sqrt{58}$
Q. 22
(1)
$\overline{\mathrm{A}}-\overline{\mathrm{B}}=3 \hat{\mathrm{i}}-\hat{\mathrm{k}}$
$A-B=\frac{\overline{\mathrm{A}}-\overline{\mathrm{B}}}{|\mathrm{A}-\mathrm{B}|}=\frac{3 \hat{\mathrm{i}}-\hat{\mathrm{k}}}{\sqrt{10}}$
Q. 23 (2)

$$
\overrightarrow{\mathrm{B}}=\mathrm{xa} \overrightarrow{\mathrm{a}}
$$

on multiplying with the scalar magnitude will change
if x is -ve direction of \vec{B} change
if x is + ve direction of \vec{B} same as \vec{a}
$\overrightarrow{\mathrm{B}} \& \overrightarrow{\mathrm{a}}$ are colinear vector
Q. 24 (2)

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{~B}}=\hat{\mathrm{j}} \Rightarrow \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{~B}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \cos \theta \\
& \cos \theta=\frac{3}{\sqrt{13}} \Rightarrow \tan \theta=2 / 3 \Rightarrow \theta=\tan ^{-1}(2 / 3)
\end{aligned}
$$

Q. 25 (2)
$\overrightarrow{\mathrm{A}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}$
$\vec{B}=2 \hat{i}+x \hat{j}+\hat{k}$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=|\overrightarrow{\mathrm{A}} \| \overrightarrow{\mathrm{B}}| \cos \theta \quad \theta=90^{\circ}$
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0$
$6+2 x+8=0, x=-7$
Q. 26 (1)
$\overrightarrow{\mathrm{A}}=\mathrm{a}_{1} \hat{\mathrm{i}}+\mathrm{a}_{2} \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{B}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
$|\hat{\mathrm{A}}|=1 \Rightarrow \mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}=1$
...(i)
$\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=0$
$4 a_{1}-3 a_{2}=0$
$4 a_{1}=3 a_{2}$
...(ii)
(i) (ii) $\rightarrow a_{1}^{2}+\frac{16}{9} a_{1}^{2}=1$
$\mathrm{a}_{1}^{2}=\frac{9}{15}, \mathrm{a}_{1}=\frac{3}{5}=0.6, \quad \mathrm{a}_{2}=0.8$
Q. 27 (1)

By the defination of equal vector.
Q. 28 (4)
$(\overline{\mathrm{A}} \times \overline{\mathrm{B}}) \perp \mathrm{A}$
$(\overline{\mathrm{A}} \times \overline{\mathrm{B}}) \perp \mathrm{B}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (A,B,D)
Q. 2 (A,B,C)

By right handed co-ordinate system.
Q. 3 (C)
(Easy) $\mathrm{x}=\mathrm{t}^{3}-3 \mathrm{t}^{2}+12 \mathrm{t}+20$
$\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=3 \mathrm{t}^{2}-6 \mathrm{t}+12$
$\mathrm{t}=0 \Rightarrow \mathrm{v}=12 \mathrm{~m} / \mathrm{s}$
Q. 4 (D)
(Easy) $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=6 \mathrm{t}-6$
$\mathrm{t}=0 \Rightarrow \mathrm{a}=-6 \mathrm{~m} / \mathrm{s}^{2}$
Q. 5 (D)
(Moderate) $\mathrm{a}=0 \Rightarrow \mathrm{t}=1 \mathrm{sec}$.
$\mathrm{v}=3 \mathrm{t}^{2}-6 \mathrm{t}+12=9 \mathrm{~m} / \mathrm{s}$
Q. 6 (A)

$$
\overrightarrow{\mathrm{F}}_{\mathrm{R}}=\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}=2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}
$$

Q. 7 (B)
$\cos \theta=\frac{\overrightarrow{\mathrm{F}}_{1} \cdot \overrightarrow{\mathrm{~F}}_{2}}{\left|\overrightarrow{\mathrm{~F}}_{1}\right|\left|\overrightarrow{\mathrm{F}}_{2}\right|} \Rightarrow \theta=\cos ^{-1}\left(\frac{3}{5 \sqrt{2}}\right)$
Q. 8 (C)
$\mathrm{F}_{1} \cos \theta=\frac{\overrightarrow{\mathrm{F}}_{1} \cdot \overrightarrow{\mathrm{~F}}_{2}}{\left|\overrightarrow{\mathrm{~F}}_{2}\right|}=\frac{6}{5}$
Q. 9 (C)
Q. 10 (A)
Q. 11 (A)
Q. 12 (A) $\rightarrow \mathrm{r},(\mathrm{B}) \rightarrow \mathrm{p},(\mathrm{C}) \rightarrow \mathrm{q},(\mathrm{D}) \rightarrow \mathrm{s}$
(A) $\int \sec x \tan x d x=\sec x+C$
(B) $\int \operatorname{cosec} \mathrm{kx} \cot \mathrm{kxdx}=\frac{\cos k \mathrm{x}}{\mathrm{k}}+\mathrm{C}$
(C) $\int \operatorname{cosec}^{2} k x d x=-\frac{\cot k x}{k}+C$
(D) $\int \cos d x=\frac{\sin k x}{k}+C$
Q. $13 \quad$ (A) $\rightarrow \mathrm{q},(\mathrm{B}) \rightarrow \mathrm{r},(\mathrm{C}) \rightarrow \mathrm{p},(\mathrm{D}) \rightarrow \mathrm{s}$
(A) $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta$
$\mathrm{A}^{2}=\mathrm{A}^{2}+\mathrm{A}^{2}+2 \mathrm{~A}^{2} \cos \theta \cos \theta=-\frac{1}{2} \theta=120$
(B) $\mathrm{F}_{1} \sim \mathrm{~F}_{2} \leq \mathrm{R} \leq \mathrm{F}_{1}+\mathrm{F}_{2}$

Here $F_{1} \sim F_{2}=4$ and $F_{1}+F_{2}=12$
(C) $\cos \theta=\frac{\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}}{|\mathrm{A}|+|\mathrm{B}|}=\frac{0}{2 \sqrt{2} \times 3}=0 \theta=90^{\circ}$
(D) $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\sqrt{2^{2}+1+3^{2}}=\sqrt{14}$

NUMERICAL VALUE BASED

Q. 1 [1]
(Given $|\mathrm{A}|=3$)
$|\vec{A}|-|\vec{B}|=2$
$|\vec{B}|>|\vec{A}|$

$$
|\vec{B}|=1
$$

Q. 2 [1]

$$
\begin{aligned}
& |\vec{A}|+|\vec{B}|=5 \\
& 2+|\vec{B}|=5 \\
& |\vec{B}|=3
\end{aligned}
$$

resultant of $|\vec{A}|$ and $|\vec{B}|$
$|\vec{B}|-|\vec{A}|=3-2=1$
Q. 3 [2]
$\overrightarrow{\mathrm{v}}_{1} \cdot \overrightarrow{\mathrm{v}}_{2}=0 \Rightarrow \mathrm{t}=2 \mathrm{sec}$
Q. 4 [1]
$\vec{a}=\frac{d^{2} \vec{r}}{d t^{2}}$
\vec{r} and \vec{a} are perpendicular if $\vec{r} \cdot \vec{a}=0$
Q. $5 \quad$ [1]
(Given $|\mathrm{A}|=3$)

$$
\begin{aligned}
& |\overrightarrow{\mathrm{A}}|-|\overrightarrow{\mathrm{B}}|=2 \quad|\overrightarrow{\mathrm{~B}}|>|\overrightarrow{\mathrm{A}}| \\
& |\overrightarrow{\mathrm{B}}|=1
\end{aligned}
$$

Q. 6 [1]
$|\overrightarrow{\mathrm{A}}|+|\overrightarrow{\mathrm{B}}|=5$
$2+|\vec{B}|=5$
resultant of $|\overrightarrow{\mathrm{A}}|$ and $|\overrightarrow{\mathrm{B}}|$

$$
|\overrightarrow{\mathrm{B}}|-|\overrightarrow{\mathrm{A}}|=3-2=1
$$

KVPY

PREVIOUS YEAR'S

Q. 1 (D)
$(\hat{n} \times \overrightarrow{\mathrm{F}}) \times \hat{\mathrm{n}}=-[\hat{\mathrm{n}} \times(\hat{\mathrm{n}} . \overrightarrow{\mathrm{F}})]$
$=-[\hat{n}(\hat{n} . \overrightarrow{\mathrm{F}})-\overrightarrow{\mathrm{F}}(\hat{\mathrm{n}} . \hat{\mathrm{n}})]$
$=\overrightarrow{\mathrm{F}}-\hat{\mathrm{n}}(\hat{\mathrm{n}} . \overrightarrow{\mathrm{F}})$
$=\overrightarrow{\mathrm{G}}$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 [8]

$$
\begin{aligned}
& \frac{\vec{a}+\vec{b}+\vec{c}+\vec{d}+\vec{e}+\vec{f}+\vec{g}+\vec{h}}{8}=0 \\
& \vec{b}+\vec{c}+\vec{d}+\vec{e}+\vec{f}+\vec{g}+\vec{h}=-\vec{a} \\
& \overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}+\overrightarrow{A G}+\overrightarrow{A H} \\
& \vec{b}-\vec{a}+\vec{c}-\vec{a}+\vec{d}-\vec{a}+\vec{e}-\vec{a}+\vec{f}-\vec{a}+\vec{g}-\vec{a}+ \\
& \vec{h}-\vec{a} \\
& (\vec{b}+\vec{c}+\vec{d}+\vec{e}+\vec{f}+\vec{g}+\vec{h})-7 \vec{a} \\
& \Rightarrow-\vec{a}-7 \vec{a} \\
& =-8 \vec{a}=-8(\overrightarrow{O A})=8 \overrightarrow{A O}=8(\overrightarrow{A O})
\end{aligned}
$$

Q. $2 \quad\left[180^{\circ}\right]$
$\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{g}}=\overrightarrow{\mathrm{g}} \times \overrightarrow{\mathrm{p}}$ only if $\overrightarrow{\mathrm{p}}=0$ or $\overrightarrow{\mathrm{g}}=0$ or angle between them is 0° or 180°.
$\therefore \theta=180^{\circ}$
Q. 3 (4)
Q. 4 (4)
Q. 5 [3]
Q. 6 (4)
Q. 7 (2)
Q. 8 (2)
Q. 9 (4)
Q. 10 (3)
Q. 11 (2)
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{Q}}$
$\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{P}}-\overrightarrow{\mathrm{Q}}$
$|\overrightarrow{\mathrm{A}}|=|\overrightarrow{\mathrm{B}}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\sqrt{2\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)(1+\cos \theta)}$
For $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\sqrt{3\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)}$
$\theta_{1}=60^{\circ}$
For $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\sqrt{2\left(\mathrm{P}^{2}+\mathrm{Q}^{2}\right)}$ $\theta_{2}=90^{\circ}$
Q. 12 (1)
Q. 13 (1)

Let magnitude be equal to λ.
$\overrightarrow{\mathrm{OA}}=\lambda\left[\cos 30^{\circ} \hat{\mathrm{i}}+\sin 30 \hat{\mathrm{j}}\right]=\lambda\left[\frac{\sqrt{3}}{2} \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}\right]$
$\overrightarrow{\mathrm{OB}}=\lambda\left[\cos 60^{\circ} \hat{\mathrm{i}}-\sin 60 \hat{\mathrm{j}}\right]=\lambda\left[\frac{1}{2} \hat{\mathrm{i}}-\frac{\sqrt{3}}{2} \hat{\mathrm{j}}\right]$
$\overrightarrow{\mathrm{OC}}=\lambda\left[\cos 45^{\circ}(-\hat{\mathrm{i}})+\sin 45 \hat{\mathrm{j}}\right]=\lambda\left[-\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}\right]$
$\therefore \overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OC}}$
$=\lambda\left[\left(\frac{\sqrt{3}+1}{2}+\frac{1}{\sqrt{2}}\right) \hat{\mathrm{i}}+\left(\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\right) \hat{\mathrm{j}}\right]$
\therefore Angle with x -axis

$$
\begin{aligned}
& \tan ^{-1}\left[\frac{\frac{1}{2}-\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}+\frac{1}{2}+\frac{1}{\sqrt{2}}}\right]=\tan ^{-1}\left[\frac{\sqrt{2}-\sqrt{6}-2}{\sqrt{6}+\sqrt{2}+2}\right] \\
& =\tan ^{-1}=\left[\frac{1-\sqrt{3}-\sqrt{2}}{\sqrt{3}+1+\sqrt{2}}\right]
\end{aligned}
$$

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (D)

$\overrightarrow{\mathrm{S}}=\overrightarrow{\mathrm{P}}+\mathrm{b} \overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{P}}+\mathrm{b}(\overrightarrow{\mathrm{Q}}-\overrightarrow{\mathrm{P}})=\overrightarrow{\mathrm{P}}(1-\mathrm{b})+\mathrm{b} \overrightarrow{\mathrm{Q}}$
Q. $2[2.00 \mathrm{sec}]$

$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{a} \cos \frac{\omega \mathrm{t}}{2}$
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{a} \sin \frac{\omega \mathrm{t}}{2}$
So, $2 \mathrm{a} \cos \frac{\omega \mathrm{t}}{2}=\sqrt{3}\left(2 \mathrm{a} \sin \frac{\omega \mathrm{t}}{2}\right)$
$\tan \frac{\omega \mathrm{t}}{2}=\frac{\pi}{6} \Rightarrow \omega \mathrm{t}=\frac{\pi}{3}$
$\frac{\pi}{6} \mathrm{t}=\frac{\pi}{3}$
$\mathrm{t}=2.00 \mathrm{sec}$

Kinematics

EXERCISES

ELEMENTARY

Q. 1 (1)

$$
\overrightarrow{\mathrm{r}}=20 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}
$$

$$
\therefore \mathrm{r}=\sqrt{20^{2}+10^{2}}=22.5 \mathrm{~m}
$$

Q. 2 (2)

Total time of motion is $2 \min 20 \mathrm{sec}=140 \mathrm{sec}$.
As time period of circular motion is 40 sec so in 140 sec . athlete will complete 3.5 revolution i.e., He will be at diametrically opposite point i.e., Displacement $=2$ R.
Q. 3 (4)

As the total distance is divided into two equal parts therefore distance averaged speed $=\frac{2 \mathrm{v}_{1} \mathrm{v}_{2}}{\mathrm{v}_{1}+\mathrm{v}_{2}}$.
Q. $4 \quad$ (3)

Total distance to be covered for crossing the bridge
$=$ length of train + length of bridge
$=150 \mathrm{~m}+850 \mathrm{~m}=1000 \mathrm{~m}$
Time $=\frac{\text { Distance }}{\text { Velocity }}=\frac{1000}{45 \times \frac{5}{18}}=80 \mathrm{sec}$.
Q. 5 (3)

From given figure, it is clear that the net displacement is zero. So average velocity will be zero.
Q. 6 (2)

As $S=u t+\frac{1}{2} \mathrm{at}^{2} \therefore \mathrm{~S}_{1}=\frac{1}{2} \mathrm{a}(10)^{2}=50 \mathrm{a}$
As $v=u+a t$
velocity acquired by particle in $10 \sec v=\mathrm{a} \times 10$
For next $10 \mathrm{sec}, \mathrm{S}_{2}=(10 \mathrm{a}) \times 10+\frac{1}{2}(\mathrm{a}) \times(10)^{2}$
$\mathrm{S}_{2}=150 \mathrm{a}$
From (i) and (ii) $\mathrm{S}_{1}=\mathrm{S}_{2} / 3$
Q. 7 (4)
$\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{m}}$. If $\overrightarrow{\mathrm{F}}=0$ then $\overrightarrow{\mathrm{a}}=0$.
Q. 8 (2)

From $v^{2}=u^{2}+2 \mathrm{aS}$
$\Rightarrow 0=\mathrm{u}^{2}+2 \mathrm{aS}$
$\Rightarrow \mathrm{a}=\frac{-\mathrm{u}^{2}}{2 \mathrm{~S}}=\frac{-(20)^{2}}{2 \times 10}=-20 \mathrm{~m} / \mathrm{s}^{2}$.
Q. 9 (2)

Constant velocity means constant speed as well as same direction throughout.
Q. 10 (4)
$S \propto u^{2} I f u$ becomes 3 times then S will become 9 times i.e.
$9 \times 20=180 \mathrm{~m}$.
Q. 11 (4)
$\mathrm{x} \propto \mathrm{t}^{3} \therefore \mathrm{x}=\mathrm{Kt}{ }^{3}$
$\Rightarrow v=\frac{\mathrm{dx}}{\mathrm{dt}}=3 \mathrm{Kt}^{2}$ and $\mathrm{a}=\frac{\mathrm{d} v}{\mathrm{dt}}=6 \mathrm{Kt}$
i.e. $\alpha \propto \mathrm{t}$.
Q. 12 (3)
$\mathrm{u}=12 \mathrm{~m} / \mathrm{s}, \mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}, \mathrm{t}=10 \mathrm{sec}$
Displacement $=u t+\frac{1}{2} \mathrm{gt}^{2}$
$=12 \times 10+\frac{1}{2} \times 9.8 \times 100=610 \mathrm{~m}$.
Q. 13 (4)

A body A is projected upwards with a velocity of $98 \mathrm{~m} /$ s . The second body B is projected upwards with the same initial (4) Let t be the time of flight of the first body after meeting, then $(t-4)$ sec will be the time of flight of the second body. Since $h_{1}=h_{2}$
$\therefore 98 \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}=98(\mathrm{t}-4)-\frac{1}{2} \mathrm{~g}(\mathrm{t}-4)^{2}$
On solving, we get $\mathrm{t}=12$ seconds
Q. 14 (3) Vertical component of velocities of both the balls are same and equal to zero. So $t=\sqrt{\frac{2 h}{g}}$.
Q. 15 (1)

$$
\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}=\frac{1}{2} \times 10 \times(4)^{2}=80 \mathrm{~m} .
$$

Q. 16 (2)

$$
\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}} \Rightarrow \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}}=\sqrt{\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}} .
$$

Q. 17 (2)

The area under acceleration time graph gives change in velocity. As acceleration is zero at the end of 11 sec

i.e. $v_{\max }$ Area of $\triangle O A B$
$=\frac{1}{2} \times 11 \times 10=55 \mathrm{~m} / \mathrm{s}$
Q. 18 (2)

Distance $=$ Area under v - t graph $=A_{1}+A_{2}+A_{3}+A_{4}$

$=\frac{1}{2} \times 1 \times 20+(20 \times 1)+\frac{1}{2}(20+10) \times 1+(10 \times 1)$
$=10+20+15+10=55 \mathrm{~m}$.
Q. 19 (2)

Region OA shows that graph bending toward time axis i.e. acceleration is negative.

Q. 20 (3)

Area of trapezium $=\frac{1}{2} \times 3.6 \times(12+8)=36.0 \mathrm{~m}$.
Q. 21 (4)

Slope of displacement time graph is negative only at point E.
Q. 22 (2)

Maximum acceleration will be represented by CD part of the graph

Acceleration $=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{(60-20)}{0.25}=160 \mathrm{~km} / \mathrm{h}^{2}$
Q. 23 (3)

From given $\mathrm{a}-\mathrm{t}$ graph it is clear that acceleration is increasing at constant rate
$\therefore \frac{\mathrm{da}}{\mathrm{dt}}=\mathrm{k}$ (constant) $\Rightarrow \mathrm{a}=\mathrm{kt}$ (by integration)
$\Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{kt} \Rightarrow \mathrm{dv}=\mathrm{ktdt}$
$\Rightarrow \int \mathrm{dv}=\mathrm{k} \int \mathrm{tdt} \Rightarrow \mathrm{v}=\frac{\mathrm{kt}^{2}}{2}$
i.e. v is dependent on time parabolically and parabola is symmetric about v-axis. and suddenly acceleration becomes zero. i.e. velocity becomes constant.
Hence (3) is most probable graph.

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (2)

Displacement $=2 r$ distance $=\pi r$
Q. 2 (2)

Fly start from A and reaches at B.

$\therefore \quad \mathrm{AB}=\sqrt{(10 \sqrt{2})^{2}+10^{2}}=10 \sqrt{3} \mathrm{~m}$
Q. 3 (2)

From A to $B t_{1}=\frac{d}{20} h r \Rightarrow$ From B to $A t_{2}=\frac{d}{30} h r$

\therefore Average Speed $=\frac{\text { Total Dis tance }}{\text { Total Time }}$
$=\frac{2 \mathrm{~d}}{\mathrm{t}_{1}+\mathrm{t}_{2}}=\frac{2 \mathrm{~d}}{\frac{\mathrm{~d}}{20}+\frac{\mathrm{d}}{30}} \Rightarrow \quad \mathrm{v}=24 \mathrm{~km} / \mathrm{hr}$
Q. 4
Q. 5 (2)
$\mathrm{V}_{\mathrm{x}}=2 \mathrm{at}$
$V_{y}=2 b t$
$V=2 t \sqrt{a^{2}+b^{2}}$
Q. 6 (2)
$\mathrm{t}=62.8 \mathrm{sec}$
in each lap car travel a distance $=2 \pi$ R
$=2 \times 3.14 \times 100=628 \mathrm{~m}$
In each lap displacement of the car $=0$
Average speed
$=\frac{\text { Total Distance }}{\text { Total Time }}=\frac{628}{62.8}=10 \mathrm{~m} / \mathrm{s}$
Average Velocity $=\frac{\text { Total Displacement }}{\text { Total Time }}=0$
Q. 7 (1)
$2 \mathrm{~s}=\mathrm{gt}^{2} \Rightarrow \mathrm{~s}=\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{gt}$
Q. 8 (3)
$\mathrm{V}_{\text {inst }}=\frac{\mathrm{dx}}{\mathrm{dt}}$ (slop of $\mathrm{x}-\mathrm{t}$ graph)
At $C \tan \theta=+$ ve At E $\theta>90^{\circ}$ (-veslop)
At D $\theta=0$ 응 $\quad \theta<90^{\circ}(+$ veslope $) \therefore$ At $E v_{\text {inst }}$ is negative
Q. 9 (3)
let the acceleration of the body is a and $u=0$
then $\mathrm{x}_{1}=\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2} \mathrm{a}(10)^{2}$
$x_{2}=\frac{1}{2} a(20)^{2}-x_{1} \Rightarrow x_{2}=\frac{1}{2} a(20)^{2}-\frac{1}{2} a(10)^{2}$
$=\frac{1}{2} \mathrm{a}(10)(30) \Rightarrow \mathrm{x}_{3}=\frac{1}{2} \mathrm{a}(30)^{2}-\frac{1}{2} \mathrm{a}(20)^{2}$
$=\frac{1}{2} \mathrm{a}(10)(50) \Rightarrow \therefore \mathrm{x}_{1}: \mathrm{x}_{2}: \mathrm{x}_{3}=1: 3: 5$
Q. 10 (1)
$u=10 \mathrm{~m} / \mathrm{sec} \quad \mathrm{a}=-2 \mathrm{~m} / \mathrm{sec}^{2}$
Total time taken when final is zero.
$\mathrm{a}=10 \mathrm{~m} / \mathrm{sec}^{2}$
$10 \mathrm{~m} / \mathrm{sec}$
$\mathrm{v}=0$
$0=10-2 \mathrm{t}$
$\mathrm{t}=5 \mathrm{sec}$
$S=u t+\frac{1}{2} a t^{2}$
$\mathrm{S}_{\mathrm{t}=5}=10 \times 5-\frac{1}{2} \times 2 \times 25=25$
$\mathrm{S}_{\mathrm{t}=4 \text { sec. }}=10 \times 4-\frac{1}{2} \times 2 \times 16=24$
$\mathrm{S}_{\mathrm{t}=5}-\mathrm{S}_{\mathrm{t}=4}=25-24=1 \mathrm{~m}$
Q. 11 (2)
$S_{2}=\frac{1}{2} \times \mathrm{a} \times 4$
$\mathrm{S}_{3}=\frac{1}{2} \times \mathrm{a} \times 9$
$S_{4}=\frac{1}{2} \times \mathbf{a} \times 16$
$S_{5}=\frac{1}{2} \times \mathrm{a} \times 25$
distance travelled by body in $3^{\text {rd }}$ see $=\frac{1}{2} \mathrm{a}[7]$
distance travelled by body in $4^{\text {rd }}$ see $=\frac{1}{2}$ a[9] ratio $=7: 9$
Q. 12 (4)

Let constant acceleration $=\mathrm{a}$
$\mathrm{S}=\frac{1}{2} \mathrm{at}^{2}$

$$
\begin{aligned}
& S_{1}=\frac{1}{2} a \times 10^{2}=50 \mathrm{a} \\
& \mathrm{~S}_{2}=\frac{1}{2} \mathrm{a} \times 20^{2}-\frac{1}{2} \mathrm{a} \times 10^{2}=150 \mathrm{a} \\
& \mathrm{~S}_{2}=3 \mathrm{~S}_{1}
\end{aligned}
$$

Q. 13 (2)

Total Length of 2 trains $=50+50=100$
Velocity $\mathrm{V}_{1}=10$
$\mathrm{V}_{2}=15$
$\mathrm{V}_{1}+\mathrm{V}_{2}=25$
time $=\frac{100}{25}=4 \mathrm{sec}$
Q. 14 (2)

In inclined initial $\mathbf{u}=0$
$\mathrm{S}=\frac{1}{2} \mathrm{at}^{2}$ and $\mathrm{a}=\mathrm{g} \sin \theta$
$l=\frac{1}{2} g \sin \theta \mathrm{x} \times(4)^{2}$
...(i)
$\frac{\ell}{4}=\frac{1}{2} \mathrm{~g} \sin \theta \mathrm{t}^{2}$
...(ii)
From (i) and (ii)
$\mathrm{t}=2 \mathrm{sec}$
Q. 15 (3)
$\frac{\mathrm{h}}{2}=\frac{1}{2} \mathrm{gt}_{1}^{2}$
$\mathrm{h}=\frac{1}{2} \mathrm{~g}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}$
From equation (1) and (2)
$2 \mathrm{t}_{1}^{2}=\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}$
$\sqrt{2} \mathrm{t}_{1}=\mathrm{t}_{1}+\mathrm{t}_{2}$
$(\sqrt{2}-1) t_{1}=t_{2}$
$t_{1}=\frac{t_{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$
$\mathrm{t}_{1}=(\sqrt{2}+1) \mathrm{t}_{2}$
Q. 16 (3)

Acceleration for both is g
$\mathrm{a}=\frac{1}{2} \mathrm{gt}_{\mathrm{a}}^{2}$
$\mathrm{b}=\frac{1}{2} \mathrm{t}_{\mathrm{b}}^{2}$
$t_{a}: t_{b}=\sqrt{\mathrm{a}}: \sqrt{\mathrm{b}}$
Q. 17 (4)

At $H_{\text {max }}, \mathrm{v}=0$
Acceleration constant \& it is due to gravity
$|a|=g$
Q. 18 (4)

Horizontal Component of velocity
Because there is no acceleration in horizontal Direction
Q. 19 (4)

$$
\mathrm{v}=\frac{\mathrm{ds}}{\mathrm{dt}}=3 \mathrm{t}^{2}-12 \mathrm{t}+3
$$

$a=\frac{d v}{d t}=6 t-12$
$\mathrm{a}=0 \Rightarrow \mathrm{t}=2 \mathrm{sec}$
$\mathrm{V}_{2 \mathrm{sec}}=3(2)^{2}-12(2)+3=+12-24+3$
$=-9 \mathrm{~m} / \mathrm{s}$
Q. 20 (3)

From graph it is clear that velocity is always positive during its motion
so displacement $=$ distance
displacement $=$ Area under V-t curve
$=\frac{1}{2} \times 20 \times 1+20 \times 1+\frac{1}{2} \times 1 \times 30+1 \times 10$
$\Rightarrow 55 \mathrm{~m}$
Q. 21 (4)

$\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=\frac{\tan 30^{\circ}}{\tan 60^{\circ}} \Rightarrow \therefore \frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{B}}}=\frac{1 / \sqrt{3}}{\sqrt{3}}=\frac{1}{3}$
Q. 22 (4)

Total Distance $=$ Area
under the curve (Position + Negative)
$=\frac{1}{2} \times 4 \times 1+4 \times 2+1 \times 4 \times \frac{1}{2}-\frac{1}{2} \times 2 \times 1-2 \times 2-\frac{1}{2} \times 1 \times 2$
$=2+8+2-1-4-1=6$ meter
Q. 23 (1)
$($ acceleration $)=$ Slope $=\frac{\Delta v}{\Delta t}$
$\mathrm{OA} \rightarrow \frac{10}{10}=1$
$\mathrm{AB} \rightarrow 0=0$
$\mathrm{BC} \rightarrow \frac{-10}{20}=-0.5$
Q. 24 (2)

Distance $=$ Total Area
$=105 \mathrm{~m}$
Displacement $=90-15=75 \mathrm{~m}$
(-ve y asxis area) - (-ve y axis area)
Q. 25 (3)

Equation of given sin curve is
$x=-A \sin t$
$V=\frac{d x}{d t}=-A \cos t$

JEE-ADVANCED

OBJECTIVE QUESTIONS
Q. 1 (A)
$\frac{\mathrm{d} / 3, \mathrm{t}_{1}}{\mathrm{~V}_{1}=2 \mathrm{~m} / \mathrm{s}} \frac{\mathrm{s}}{\mathrm{V}_{2}=3 \mathrm{~m} / 3, \mathrm{t}_{2}} \frac{\mathrm{~s}}{\mathrm{~d} / 3, \mathrm{t}_{3}} \mathrm{~V}_{3}=6 \mathrm{~m} / \mathrm{s}$

Now $t_{1}=\frac{d / 3}{v_{1}}=\frac{d}{6}$
$\mathrm{t}_{2}=\frac{\mathrm{d} / 3}{3}=\frac{\mathrm{d}}{9} \Rightarrow \mathrm{t}_{3}=\frac{\mathrm{d} / 3}{6}=\frac{\mathrm{d}}{18}$

Average Velocity $==\frac{\mathrm{d}}{\frac{\mathrm{d}}{6}+\frac{\mathrm{d}}{9}+\frac{\mathrm{d}}{18}}=\frac{18}{6}=3 \mathrm{~m} / \mathrm{s}$
Q. 2 (B)
$x=5 \sin 10 t \Rightarrow v_{x}=\frac{d x}{d t}=50 \cos 10 t$
$y=5 \cos 10 t \Rightarrow v_{y}=\frac{d y}{d t}=-50 \sin 10 t$
$V^{2}{ }_{\text {net }}=V_{x}{ }^{2}+v_{y}{ }^{2}$
$\mathrm{v}_{\text {net }}=\sqrt{(50)^{2}\left(\sin ^{2} 10 \mathrm{t}+\cos ^{2} 10 \mathrm{t}\right)}=50 \mathrm{~m} / \mathrm{sec}$
Q. 3 (B)
$v=t^{2}-t=t(t-1)$
$\therefore \mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=2 \mathrm{t}-1$
Motion is consider as Retards
when V \& a are in opposite Direction
Case - 1
If $v>0$ then $a<0$
But $\mathrm{t}^{2}-\mathrm{t}>0, \mathrm{t}>1$
and $\mathrm{a}>0$ for $\mathrm{t}>1$
so not Possible
Case - 2
$\mathrm{v}<0, \mathrm{a}>0$
$\mathrm{t}^{2}-\mathrm{t}<0,2 \mathrm{t}-1>0$
$\mathrm{t} \in(0,1), \mathrm{t}>\frac{1}{2}$
$\frac{1}{2}<t<1$
Q. 4 (B)

Stone is dropped
so time taken by stone to reach the bottom of the wall t_{1}
$\therefore \mathrm{h}=\frac{1}{2} \mathrm{gt}_{1}{ }^{2}$
$=\mathrm{t}_{1}=\sqrt{\frac{2 h}{g}}-(\mathrm{i})$
time taken by sound to comes from bottom to upper
end $t_{2}=\frac{h}{v}$
\therefore Total time $=\mathrm{t}_{1}+\mathrm{t}_{2}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}+\frac{\mathrm{h}}{\mathrm{v}}$
(A)
distance Travelled by (first ball)
$S=u t+\frac{1}{2} a t^{2}$
$=5 \times 2+\frac{1}{2} \times 10 \times 2^{2}=30 \mathrm{~m}$
Relative Method
Velocity of first ball after 2 sec .
$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$\mathrm{V}=5+10 \times 2=25$
$\mathrm{t}=\frac{30}{\mathrm{v}_{1}-25}=2 \mathrm{sec}$

$30=2 \mathrm{v}_{1}-50 \Rightarrow \mathrm{v}_{1}=40 \mathrm{~m} / \mathrm{s}$
Q. 6 (D)

$\mathrm{H}=\mathrm{ut}_{1}-\frac{1}{2} \mathrm{gt}_{1}{ }^{2}$
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\mathrm{u}=\mathrm{g}\left(\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}\right)$
From (i) and (ii)
$\mathrm{H}=\frac{\mathrm{g}}{2}\left(\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{1} \mathrm{t}_{2}\right)-\frac{1}{2} \mathrm{gt}_{1}{ }^{2}$
$\mathrm{H}=\frac{1}{2} \mathrm{gt}_{1} \mathrm{t}_{2}$
Q. 7 (C)
$\therefore \mathrm{H}_{\text {max }}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \Rightarrow \mathrm{u}=\sqrt{2 \mathrm{hg}}$
Given $=5 \mathrm{~m} \Rightarrow$
$\mathrm{H}_{\text {max }}=5 \mathrm{~m}$
$\mathrm{t}=\frac{\mathrm{u}}{\mathrm{g}}=\frac{\sqrt{2 \mathrm{gh}}}{\mathrm{g}}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
$=\sqrt{\frac{2 \times 5}{10}}=1 \mathrm{sec}$
in $1 \mathrm{~min}=60$ Balls.
Q. 8 (D)
$\mathrm{v}=\ln \mathrm{x} \mathrm{m} / \mathrm{s}$ (Given)
$\mathrm{a}=\frac{\mathrm{vdv}}{\mathrm{dx}}=\frac{1}{\mathrm{x}} \ln \mathrm{x}$
$\Rightarrow \mathrm{F}_{\text {net }}=0$
$\Rightarrow \mathrm{a}=0 \Rightarrow$
$\mathrm{x}=1 \mathrm{~m}$
Q. 9 (C)

$$
\begin{aligned}
& \vec{F}=2 \sin 3 \pi t \hat{i}+3 \cos 3 \pi t \hat{j} \\
& a=\frac{d v}{d t}=2 \sin 3 \pi t \hat{i}+3 \cos 3 \pi t \hat{j}
\end{aligned}
$$

$$
\int_{0}^{v} d v=2 \int_{0}^{t} \sin 3 \pi t d t \hat{i}+3 \int_{0}^{t} \cos 3 \pi t \cdot d t \hat{j}
$$

$$
v=-\frac{2}{3 \pi}[\cos 3 \pi t]_{o}^{t} \hat{\mathrm{i}}+\frac{3}{3 \pi}[\sin 3 \pi t]_{o}^{t} \hat{\mathrm{j}}
$$

$$
\int_{0}^{\mathrm{r}} \mathrm{dx}=\int_{\mathrm{o}}^{\mathrm{t}}\left[\frac{-2}{3 \pi}[\cos 3 \pi \mathrm{t}-1] \hat{\mathrm{i}}+\frac{1}{\pi} \sin 3 \pi \mathrm{t} \mathrm{j}\right] \cdot \mathrm{dt}
$$

$$
\overrightarrow{\mathrm{r}}=-\frac{2}{3 \pi}\left[\int_{0}^{\mathrm{t}} \cos 3 \pi \mathrm{t}-\int_{0}^{\mathrm{t}} \mathrm{dt}\right] \hat{\mathrm{i}}+\frac{1}{\pi} \int_{0}^{\mathrm{t}} \sin 3 \pi \mathrm{t} \hat{\mathrm{j}} \mathrm{dtn}
$$

$$
=-\frac{2}{(3 \pi)^{2}}[\sin 3 \pi t]_{0}^{t} \hat{i}+\frac{2}{3 \pi} t \hat{i}-\frac{1}{3 \pi^{2}}[\cos 3 \pi t]_{0}^{t} \hat{j}
$$

For $\mathrm{t}=1 \mathrm{sec}$
$\overrightarrow{\mathrm{r}}=\frac{2}{3 \pi} \hat{\mathrm{i}}+\frac{2}{3 \pi^{2}} \hat{\mathrm{j}}$
Q. 10 (B)
$\mathrm{F}=\mathrm{Be}^{-\mathrm{ct}}$
$a=\frac{B}{m} e^{-c t} \Rightarrow \int_{0}^{v} d v=\int_{0}^{t} \frac{B}{m} e^{-c t} d t$
$v=-\frac{B}{m c}\left[e^{-c t}-1\right] \Rightarrow A t t=\infty \quad v=\frac{B}{m c}$
Q. 11 (D)
Q. 12 (D)

From graph
$\mathrm{a}=-\mathrm{AV}+\mathrm{B}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{AV}+\mathrm{B}$
$\int \frac{\mathrm{dv}}{\mathrm{B}-\mathrm{AV}}=\int \mathrm{dt}$
$\Rightarrow \frac{-1}{\mathrm{~A}} \int \frac{\mathrm{dk}}{\mathrm{k}}=\int \mathrm{dt}(\mathrm{B}-\mathrm{AV})=\mathrm{K}$
$-\ln (\mathrm{B}-\mathrm{AV})=\mathrm{At}+\mathrm{c}$
$c=-\ln B($ When $t=0, V=0)$
$\therefore-\ln (B-A V)=A t-\ln B$
$\mathrm{t}=\frac{1}{\mathrm{~A}} \ln \left(\frac{\mathrm{~B}}{\mathrm{~B}-\mathrm{AV}}\right)$
$\mathrm{e}^{\mathrm{At}}=\frac{\mathrm{B}}{\mathrm{B}-\mathrm{AV}} \Rightarrow \mathrm{B}-\mathrm{AV}=\mathrm{Be}^{-\mathrm{At}}$
$\Rightarrow \mathrm{V}=\frac{\mathrm{B}}{\mathrm{A}}\left(1-\mathrm{e}^{-\mathrm{At}}\right)$

Q. 13 (C)

Point C

Average Vel. vector is along the x -axis at point ' c ' instanteous vel. vector is along the x -axis.
Q. 14 (B)

Area
$=0.4 \times 0.2+0.4 \times 0.2+0.4 \times 0.2+\frac{1}{2} \times 0.4 \times 0.2+0.6 \times 0.2$
$\mathrm{v}_{\mathrm{f}}{ }^{2}-\mathrm{v}_{\mathrm{i}}{ }^{2}=2 \mathrm{ax}$
then $v_{f}^{2}-v_{i}^{2}=2$ Area
$v_{f}^{2}=0.8+(0.8)^{2}$
$\mathrm{V}_{\mathrm{f}}=1.2 \mathrm{~m} / \mathrm{s}$
Q. 15 (A)
(upward direction is +ve)

$$
\underbrace{\left\{\begin{array}{l}
u=0 \\
a=-g
\end{array}\right.} \begin{aligned}
& \quad \begin{array}{l}
u=+v e \\
a=-g
\end{array}
\end{aligned}
$$

Vel. of the particle just before the collision with solid surface euqal to just after polision with solid surface.
Q. 16 (D)

Slope of v-t curve gives aceleration
Here slope of $P_{1}>$ slope of $P_{2}\left(a_{p_{1}}>a_{p_{2}}\right)$

Relative velocity in their motion continousely increases.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (B,C,D)
(B) $\Rightarrow \mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}$
(C) $\stackrel{\vec{v}}{\overleftarrow{a}}$ Object is slowing down.

the particle is moving towards origin.
Q. 2 (C,D)
$\xrightarrow{(+)}$
$\stackrel{(-)}{\longleftrightarrow}$
$\underset{\overrightarrow{\mathrm{a}}}{\overrightarrow{\mathrm{a}}} \cdot(\mathrm{v}) \uparrow \stackrel{\overleftarrow{v}}{\overleftarrow{\mathrm{a}}} \cdot(\mathrm{v}) \uparrow$

Q. 3 (A,C)
$\mathrm{v}=10-5 \mathrm{t}$

When $v=0$ at $t=2 \mathrm{sec}$.
Max displacement $=10 \mathrm{t}-\frac{5 \mathrm{t}^{2}}{2}$
put $=2 \Rightarrow 20-10=10 \mathrm{~m}$
Distance traveled in first 3 seconds
$=10+\left(0+\frac{1}{2} \times 5 \times(1)^{2}\right) \Rightarrow=12.5 \mathrm{~m}$
Q. $4(\mathrm{~A}, \mathrm{C})$
(A) At the top of the motion $\mathrm{v}=0$ but $\mathrm{a}=-\mathrm{g}$.
$(A, B) a=\frac{d v}{d t}$

(C) If particle is moving with costant velocity
(D) No
Q. 5 (A,B,C,D)
$\mathrm{X}=\alpha \mathrm{T}^{2}-\beta \mathrm{t}^{3}$
(A) $0=\alpha \mathrm{t}^{2}-\beta \mathrm{t}^{3} \Rightarrow \mathrm{t}=\frac{\alpha}{\beta}$
(B) $\mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=2 \alpha \mathrm{t}-3 \beta \mathrm{t}^{2} \Rightarrow \mathrm{v}=0 \Rightarrow \mathrm{t}=\frac{2 \alpha}{3 \beta}$
(C) $\mathrm{a}=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=2 \alpha-6 \beta \mathrm{t}$
when $\mathrm{t}=0 \Rightarrow \mathrm{a}=2 \alpha ; \mathrm{v}=0$
(D) Acceleration at $\mathrm{t}=\frac{\alpha}{3 \beta} \quad ; \mathrm{a}=0$
\therefore net force $=0$
Q. 6 (C)

Area $=\frac{\pi(1)^{2}}{2}=\frac{\pi}{2} \mathrm{~m}$
Av velocity $=\frac{\pi}{2 \times 2}=\frac{\pi}{4} \mathrm{~m} / \mathrm{s}$
Q. 7 (A,B,C,D)
(a) At T (velocity changes its direction)
(b) slope constant
(c) Upper area = Lower area
(d) Initial speed = final speed.
Q. 8 (A,C,D)

(A) A to F

Average velocity $=\frac{\text { Total Desplacement }}{\text { Total time }}$
$=\frac{a}{5 a / v}=\frac{v}{5}$
(B) A to $\mathrm{D}=\frac{2 \mathrm{a}}{3 \mathrm{a} / \mathrm{v}}=\frac{2}{3} \mathrm{v}$
(C) A to $\mathrm{C}=\frac{\mathrm{a} \sqrt{3}}{2 \mathrm{a} / \mathrm{v}}=\frac{\mathrm{v} \sqrt{3}}{2}$
(D) A to $\mathrm{B}=\frac{\mathrm{a}}{\mathrm{a} / \mathrm{v}}=\mathrm{v}$
Q. 9 (A)

Take x -axis along motion of truck and y -axis vertically upward

$$
\begin{aligned}
& {\overrightarrow{v_{\text {ball } / \text { boy }}}=(10 \hat{j}) \mathrm{m} / \mathrm{s}}_{{\overrightarrow{v_{\text {boy } / \mathrm{g}}}}=(10 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}}^{\overrightarrow{\mathrm{v}}_{\text {ball } / \mathrm{g}}=(10+10)}
\end{aligned}
$$

Distance of ball from pole

$$
\begin{aligned}
& =\frac{u^{2} \sin 2 \theta}{g}=\frac{(10 \sqrt{2})^{2} \times \sin 90}{g} \\
& =20 \mathrm{~m}
\end{aligned}
$$

Q. 10 (A)

Maximum height $=\frac{10^{2}}{2 \mathrm{~g}}=5 \mathrm{~m}$
Q. 11 (C)

At maximum height, velocity of ball is horizontal.
Time taken by ball to reach maximum height

$$
\mathrm{t}_{\mathrm{H}}=\frac{\mathrm{u}_{\mathrm{y}}}{\mathrm{~g}}=\frac{10}{10}=1 \mathrm{sec}
$$

Velocity of truck is
$\mathrm{v}=\mathrm{u}+\mathrm{at}$

$$
=10+2 \times 1=12 \mathrm{~m} / \mathrm{s}
$$

Q. 12 (C)
$\mathrm{V}_{\mathrm{R} / \mathrm{S}}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~m} / \mathrm{s}$
Q. 13 (D)

$\tan 53^{\circ}=\frac{y}{20}$
$y=20 \times \frac{4}{3}=\frac{80}{3}$
$\sin 37^{\circ}=\frac{\mathrm{d}}{40-\frac{80}{3}} \quad \mathrm{~d}=\frac{3}{5}\left[\frac{40}{3}\right]=8 \mathrm{~m}$
Q. 14 (A)
$\tan 37^{\circ}=\frac{8}{\mathrm{BC}}$
$\Rightarrow \quad \frac{3}{4}=\frac{8}{\mathrm{BC}}$
$\sin 53^{\circ}=\frac{80}{3 \mathrm{AB}}$
$\Rightarrow \quad \mathrm{t}=\frac{\frac{32}{3}+\frac{100}{3}}{5}=\frac{132}{15}=8.8 \mathrm{sec}$

Q. 15 (B)

Distance travelled $=$ Are $=\frac{1}{2} \times(10+5) \times 10=75 \mathrm{~m}$
Q. 16 (C)
$\mathrm{ma}=|-(10)(1000) \mathrm{kg}|$

$$
=10000 \mathrm{~N}
$$

Q. 17 (D)
Q. 18 (B)

Particle is at rest when $\mathrm{v}=0$
$\Rightarrow \mathrm{t}=0$, and $\mathrm{t}=8 \mathrm{sec}$
Q. 19 (C)

Rate of change of velocity $\left|\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}\right|=$ is maximum in 4 to 6 s
Q. 20 (A)

$$
\begin{aligned}
& x-(-15)=+\frac{1}{2} \times 2 \times 10 \\
& x+15=10 \\
& x=-5 m
\end{aligned}
$$

Q. 21 (A)
$\mathrm{d}_{\text {max }}=\frac{1}{2}(4.25+2) \times 10=32.25 \mathrm{~m}$
Q. 22 (A)

Distance $=32.25 \mathrm{~m}+\frac{1}{2} \times 3.75 \times 10=51 \mathrm{~m}$
Q. 23 (A)-R ; (B)-P,Q; (C)-S ; (D)-P,Q,R,S
(A) $\mathrm{v}>0$ and $\frac{\mathrm{dv}}{\mathrm{dt}}<0$
or
$\mathrm{v}>0$ and $\frac{\mathrm{dv}}{\mathrm{dt}}>0$
(B) $\frac{\mathrm{ds}}{\mathrm{dt}}>0$
or
$\mathrm{v}>0$ and $\frac{\mathrm{dv}}{\mathrm{dt}}>0$
or
$\mathrm{v}<0$ and $\frac{\mathrm{dv}}{\mathrm{dt}}<0$
(C) $\left|\frac{\mathrm{dv}}{\mathrm{dt}}\right|$ is increasing
(D) $\mathrm{x}>0$, and $\mathrm{v}>0$ $\mathrm{x}<0$ and $\mathrm{v}<0$

NUMERICAL VALUE BASED

Q. 1 [50]
$a=\frac{v d v}{d s}$
$\int a d s=\int v d v$
$\frac{\mathrm{v}^{2}}{2}=\frac{1}{2} \times 50 \times 50$
$\Rightarrow \quad \mathrm{v}=50 \mathrm{~m} / \mathrm{s}$
Q. 2 [0030]

For downward motion,

$$
\begin{aligned}
& \quad \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}=\mathrm{u}^{2}+2 \mathrm{~g} \times 15=\mathrm{u}^{2}+300 \\
& \therefore \quad \mathrm{v}=\sqrt{\mathrm{u}^{2}+300} \\
& \text { for upward motion, } \mathrm{u}_{1}=\frac{\mathrm{v}}{2}=\frac{\sqrt{\mathrm{u}^{2}+300}}{2}
\end{aligned}
$$

$0^{2}=\mathrm{u}_{1}{ }^{2}-2 \mathrm{~g} \times 15 \quad \Rightarrow \quad \mathrm{u}_{1}{ }^{2}=300$
$\therefore \frac{\mathrm{u}^{2}+300}{4}=300$
$\therefore \mathrm{u}=30 \mathrm{~ms}^{-1}$
Q. 3 [8m]
$\mathrm{v}^{2}=4+4 \mathrm{x}$
$\mathrm{a}=2, \mathrm{u}=2$
$\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}=8 \mathrm{~m}$
Q. $4 \quad$ [30 km]
$4 \mathrm{t}_{1}+12 \mathrm{t}_{2}=\mathrm{x}\left(\mathrm{t}_{2}=2 \mathrm{hr}\right.$ given $)$
$4 \mathrm{t}_{1}=\mathrm{x}-24=12\left(\mathrm{t}_{1}-1\right)$
$12=8 \mathrm{t}_{1} \Rightarrow \mathrm{t}_{1}=\frac{3}{2} \mathrm{hr}$
So, $4 \mathrm{t}_{1}=6 \mathrm{~km}$ and $\mathrm{x}=30 \mathrm{~km}$
Q. 5
[750]

$\frac{h}{v t-\ell}=\tan 37^{\circ}$
$\Rightarrow \quad \mathrm{v}=\frac{\frac{\mathrm{h}}{\tan 37^{\circ}}+\ell}{\mathrm{t}}=7.5 \mathrm{~m} / \mathrm{s}=750 \mathrm{~cm} / \mathrm{s}$
Q. 6 [0004]
$\frac{\mathrm{vdv}}{\mathrm{dx}}=4-2 \mathrm{x}$
$\int_{0}^{v} v d v=\int_{0}^{x}(4-2 x) d x$
$\Rightarrow \frac{\mathrm{v}^{2}}{2}=4 \mathrm{x}-\mathrm{x}^{2}$
when $v=0,4 x-x^{2}=0$
$\mathrm{x}=0,4$
\therefore At $\mathrm{x}=4$, the particle will again come to rest.
Q. $7 \quad$ [10]
$\mathrm{s}=\mathrm{vt}=\frac{1}{2} \mathrm{at}^{2} \quad \therefore \mathrm{t}=\frac{2 \mathrm{v}}{\mathrm{a}}$
$\mathrm{v}_{\mathrm{f}}=\mathrm{at}=2 \mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
Q. 8 [25]

Average speed $=\frac{\text { distance travelled }}{\text { time taken }}$
$\mathrm{b}=\frac{\text { total area }}{\text { total time }}=\frac{10+20}{6}=\frac{30}{6}=5 \mathrm{~m} / \mathrm{s}$
Average acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
$C=\frac{10-(-10)}{4}=\frac{20}{4}=5 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{bc}=(5)(5)=25 \mathrm{~m}^{2} / \mathrm{s}^{3}$
Q. 9 [0075]
$0=\mathrm{u}-10 \times 1.75$
$\mathrm{u}=17.5 \mathrm{~m} / \mathrm{s}=17.5 \times 6-\frac{1}{2} \times 10 \times 6^{2}=105-180=-75 \mathrm{~m}$
Q. 10 [0085]

For max ht.
$0=\mathrm{u}-10 \mathrm{t}$
$\mathrm{t}=1 \mathrm{sec}$.
$\mathrm{h}_{\max }=10 \times \mathrm{t}-\frac{1}{2} \times 10 \times \mathrm{t}^{2}=10-5=5 \mathrm{~m}$
$\mathrm{s}_{\text {next }} 4 \mathrm{sec}=\frac{-1}{2} \times 10 \times 4^{2}=-80 \mathrm{~m}$
dist. $=80+5=85 \mathrm{~m}$

KVPY

PREVIOUS YEAR'S

Q. 1 (C)

In beach velocity is higher
\therefore beach is rarer and sea is denser medium
So when it go from rarer to denser medium it bend toward normal to reach in minimum time.

Q. 2 (C)

$\mathrm{H}-\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{h}-\mathrm{ut}-\frac{1}{2} \mathrm{gt}^{2}$
$\mathrm{H}=\mathrm{ut}$
$\mathrm{t}=\frac{\mathrm{u}}{2 \mathrm{~g}}($ from (1) and (2) $)$
$\therefore \mathrm{h}=\mathrm{u} \times \frac{\mathrm{u}}{2 \mathrm{~g}}-\frac{1}{2} \mathrm{~g} \times \frac{\mathrm{u}^{2}}{4 \mathrm{~g}^{2}}$
$=\frac{3 u^{2}}{8 g}=\frac{3 H}{4}$
Q. 3 (A)
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$u_{x}=u$ at $(0, b)$
$u_{y}=0$
$\frac{2 \mathrm{x}}{\mathrm{a}^{2}} \frac{\mathrm{~d}}{\mathrm{x}}+\frac{2 \mathrm{y}}{\mathrm{b}^{2}} \frac{\mathrm{dy}}{\mathrm{dt}}=0$
Again diff. w.r.t. to time
$\frac{2 x}{a^{2}} \frac{d^{2} x}{x^{2}}+\frac{2}{a^{2}}\left(\frac{d x}{d t}\right)^{2}+\frac{2 y}{b^{2}} \frac{d^{2} y}{d t^{2}}+\frac{2}{b^{2}}\left(\frac{d y}{d t}\right)=0$
acceleration at $(0, b)$ is
$a_{y}=\frac{-b}{a^{2}} u^{2}$
Q. 4 (A)
(I) Let initial distance between P and Q is X

at $t_{1}=\frac{x}{2}$ a receive the ball.
Next ball
$t_{2}=\frac{x-5}{2}+5$
$\Delta t=\frac{5}{2}$
(II) in second case
at $\mathrm{t}=0 \mathrm{P}$ throws the ball.

$t_{1}=\frac{x}{3}$.
Next ball
$\mathrm{t}_{2}=\frac{\mathrm{x}-5}{3}+5$
$\Delta \mathrm{t}=\frac{10}{3}$
Q. 5 (D)

From graph V first increases then decreases Hence a is earliar positive then negative
$\mathrm{a}=\mathrm{P}-\mathrm{qt}$
Q. 6 (D)
$\Delta \mathrm{V}=$ const \& $\Delta \mathrm{S}$ increases with time
Q. 7 (A)

Magnitude of slope is increasing at point R. Magnitude of slope of displacement-time graph represents speed
Q. 8
(2)

$\mathrm{x}=\frac{1}{2} \mathrm{at}^{2}$ parabolic for 0 to 4 sec
[at $\mathrm{t}=4 \sec \mathrm{x}=\frac{1}{2} \times(1)(4)^{2}=8 \mathrm{~m}$]
then $\operatorname{after}(\mathrm{v}=4 \mathrm{~m} / \mathrm{s})$
$\mathrm{v}=4$
$\frac{\mathrm{dx}}{\mathrm{dt}}=4$
$\int_{8}^{\mathrm{x}} \mathrm{dx}=\int_{4}^{1} 4 \mathrm{dt}$
$x-8=4(t-4)$
$\mathrm{x}=4 \mathrm{t}-8(\mathrm{st}$. line $)$

Q. 9 (B)

Time taken to reach sound after hit $\mathrm{t}_{\mathrm{s}}=\frac{\mathrm{H}}{\mathrm{V}_{\mathrm{s}}}$
$\mathrm{t}_{\mathrm{s}}=\left(\frac{85}{340}\right) \mathrm{sec} ; \mathrm{t}_{\mathrm{s}}=0.25 \mathrm{sec}$
For ball time of flight T_{f}
$\mathrm{T}_{f}+\mathrm{t}_{\mathrm{s}}=5.25 \mathrm{sec}$
$\mathrm{T}_{f}=5.25-0.25$
$\mathrm{T}_{f}=5 \mathrm{sec}$
For ball
$\mathrm{V}_{0} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}=-\mathrm{H} \Rightarrow \mathrm{V}_{0}(5)-\frac{1}{2} 10(5)^{2}=-85$
$5 \mathrm{~V}_{0}=40$
$\mathrm{V}_{0}=8 \mathrm{~m} / \mathrm{s}$
Q. 10 (2)
$-\mathrm{h}=-\mathrm{Ut}_{1}+\frac{-1}{2} \mathrm{~g} \mathrm{t}_{1}{ }^{2}$

$$
\begin{align*}
& \mathrm{h}=\mathrm{Ut}_{1}+\frac{1}{2} \mathrm{gt}_{1}^{2} \tag{1}\\
& -\mathrm{h}=\mathrm{Ut}_{2}-\frac{1}{2} \mathrm{gt}_{2}^{2} . \tag{2}
\end{align*}
$$

Point from where particle is thrown downward
$\mathrm{Ut}_{1}+\mathrm{Ut}_{2}=\frac{1}{2} \mathrm{gt}_{2}{ }^{2}-\frac{1}{2} \mathrm{gt}_{1}{ }^{2} \quad($ from $1 \& 2)$
$\mathrm{U}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)=\frac{\mathrm{g}}{2}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \times\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\mathrm{U}=\frac{\mathrm{g}}{2}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
\therefore Max height $=\mathrm{h}+\frac{\mathrm{U}^{2}}{2 \mathrm{~g}}$

$=(h)+\frac{U^{2}}{2 g}$
$=\mathrm{Ut}_{1}+\frac{1}{2} \mathrm{gt}_{1}{ }^{2}+\frac{\mathrm{U}^{2}}{2 \mathrm{~g}}$
$=\frac{g}{2} t_{1}\left(t_{2}-t_{1}\right)+\frac{1}{2} \mathrm{gt}_{1}{ }^{2}+\frac{1}{2 g} \frac{g^{2}}{4}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)^{2}$
$=\frac{g}{2}\left(t_{2}-t_{1}\right) t_{1}+\frac{g t_{1}^{2}}{2}+\frac{g}{8}\left(t_{2}-t_{1}\right)^{2}$
$=\left(\frac{\mathrm{g}}{2}\right)\left\{\left(\mathrm{t}_{2} \mathrm{t}_{1}-\mathrm{t}_{1}{ }^{2}\right)+\mathrm{t}_{1}{ }^{2}+\frac{\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)^{2}}{4}\right\}$
$=\left(\frac{\mathrm{g}}{2}\right) \frac{\left\{4 \mathrm{t}_{2} \mathrm{t}_{1}-4 \mathrm{t}_{1}{ }^{2}+4 \mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+\mathrm{t}_{1}{ }^{2}-2 \mathrm{t}_{1} \mathrm{t}_{2}\right\}}{4}$
$=\left(\frac{\mathrm{g}}{2}\right) \frac{\left\{\mathrm{t}_{1}{ }^{2}+\mathrm{t}_{2}{ }^{2}+2 \mathrm{t}_{1} \mathrm{t}_{2}\right\}}{4}$
$=\left(\frac{\mathrm{g}}{2}\right) \frac{\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}}{4}$
$=\frac{\mathrm{g}}{8}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)^{2}$
Q. 11 (A)
$\mathrm{v}^{2}=\mathrm{v}^{2}-2 \mathrm{gh} \rightarrow$ parabola
Q. 12 (C)
$\mathrm{f}=8-2 \mathrm{t}^{2}=\mathrm{m} \frac{\mathrm{dv}}{\mathrm{dt}}$
$\frac{2}{3} \frac{\mathrm{dv}}{\mathrm{dt}}=8-2 \mathrm{t}^{2}$
$\int d v=\frac{3}{2} \int\left(8-2 \mathrm{t}^{2}\right)$
$\Rightarrow \mathrm{v}=\frac{3}{2}\left[8 \mathrm{t}-\frac{2 \mathrm{t}^{3}}{3}+\mathrm{C}\right]$
On putting at $\mathrm{t}=-2 \mathrm{sec} \quad \mathrm{v}=-15 \mathrm{sec}$ $\Rightarrow \mathrm{C}=2 / 3$
F is zero again at $t=2 \sec$ putting t in (A)
So v' $=17 \mathrm{~m} / \mathrm{s}$
Q. 13 (D)

$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \times 3.14}{\omega}=1.5$
$\omega=\frac{2 \times 3.14}{1.5}$
$\theta=\omega \Delta \mathrm{t}=\frac{2 \times 3.14}{1.5} \times 0.8 \approx 3.14 \approx \pi \mathrm{rad}$
So, displacement $=2 \mathrm{R}=2 \mathrm{~m}$

JEE MAIN

PREVIOUS YEAR'S

Q. 1 (2)

$\therefore \mathrm{v}^{2}=\mathrm{u}^{2}+2 \ell$
$\& v_{\text {middlev }}^{2}=u^{2}+2 a \frac{\ell}{2}$
$\therefore \mathrm{v}_{\text {middle }}^{2}=\mathrm{u}^{2}+\mathrm{al}$
$=u^{2}+\left(\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2}\right)$
$=\frac{\mathrm{v}^{2}-\mathrm{u}^{2}}{2}$
$\therefore \mathrm{v}_{\text {middle }}=\sqrt{\frac{\mathrm{v}^{2}+\mathrm{u}^{2}}{2}}$
Q. $2 \quad[45 \mathrm{~m}]$

At the instant $2^{\text {nd }}$ particle is dropped $1^{\text {st }}$ particle is moving at $10 \mathrm{~m} / \mathrm{s} \&$ has moved for time 1 s .

Time for particles to meet, $\Delta \mathrm{t}=\frac{\mathrm{S}_{\text {rel }}}{\mathrm{V}_{\text {rel }}}=\frac{20}{10}=2 \mathrm{~s}$
\therefore Time taken by first particle to reach ground $=3 \mathrm{~s} \mathrm{H}$
$=\frac{1}{2} \mathrm{~g}(3)^{2}=45 \mathrm{~m}$
Q. 3
(1)
$\mathrm{F}=-\alpha \mathrm{x}^{2}=\mathrm{ma}$
$a=\frac{-\alpha x^{2}}{m}=v \frac{d v}{d x}$
$\int_{v_{0}}^{0} v d v=\int_{0}^{x} \frac{\alpha x^{2} d x}{m}$
$-\frac{v_{0}^{2}}{2}=\frac{\alpha x^{3}}{3 m}$
$\mathrm{x}=\left(\frac{3 \mathrm{mv}_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$
Q. 4
Q. 5 (1 or Bonus)

For $0 \leq \mathrm{x} \leq 200$
$\mathrm{v}=\mathrm{mx}+\mathrm{C}$
$\mathrm{v}=\frac{1}{5} \mathrm{x}+10$
$\mathrm{a}=\frac{\mathrm{vdv}}{\mathrm{dx}}=\left(\frac{\mathrm{x}}{5}+10\right)\left(\frac{1}{5}\right)$
$a=\frac{x}{25}+2 \Rightarrow$ Straight line till $x=200$
for $\mathrm{x}>200$
$\mathrm{v}=$ constant
$\Rightarrow \mathrm{a}=0$

Hence most approriate option will be (1), otherwise it would be BONUS.
Q. 6

$$
\begin{align*}
& \begin{aligned}
\overrightarrow{\mathrm{a}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{~m}}= & \frac{2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{2} \\
& =\hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}+2.5 \hat{\mathrm{k}}
\end{aligned} \tag{12}\\
& \begin{aligned}
& \vec{\tau}=\overrightarrow{\mathrm{u} t}+ \\
&+\frac{1}{2} \overrightarrow{\mathrm{a}} \mathrm{t}^{2}
\end{aligned} \\
& \quad=0+\frac{1}{2}(\hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}+2.5 \hat{\mathrm{k}})(16) \\
& \mathrm{b}=12
\end{align*}
$$

Q. 7 (3)
$\mathrm{v}_{0}=\alpha \mathrm{t}_{1}$ and $0=\mathrm{v}_{0}-\beta \mathrm{t}_{2} \Rightarrow \mathrm{v}_{0}=\beta \mathrm{t}_{2}$
$\mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{t}$
$\mathrm{v}_{0}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)=\mathrm{t}$

$\Rightarrow \mathrm{v}_{0}=\frac{\alpha \beta \mathrm{t}}{\alpha+\beta}$
Distance $=$ area of v-t graph
$=\frac{1}{2} \times t \times v_{0}=\frac{1}{2} \times t \times \frac{\alpha \beta t}{\alpha+\beta}=\frac{\alpha \beta t^{2}}{2(\alpha+\beta)}$
Q. 8 (2)
$\mathrm{v}=\mathrm{v}_{0}+\mathrm{gt}+\mathrm{Ft}^{2}$
$\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{v}_{0}+\mathrm{gt}+\mathrm{Ft}^{2}$
$\int \mathrm{ds}=\int_{0}^{1}\left(\mathrm{v}_{0}+\mathrm{gt}+\mathrm{Ft}^{2}\right) \mathrm{dt}$
$\mathrm{s}=\left[\mathrm{v}_{0} \mathrm{t}+\frac{\mathrm{gt}^{2}}{2}+\frac{\mathrm{Ft}^{3}}{3}\right]_{0}^{1}$
$\mathrm{s}=\mathrm{v}_{0}+\frac{\mathrm{g}}{2}+\frac{\mathrm{F}}{3}$
Q. 9 (2)

Option (2) represent correct graph for particle moving with constant acceleration, as for constant acceleration velocity time graph is straight line with positive slope and x-t graph should be an opening upward parabola.
Q. 10 [10]
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$0=(10) 2+2(-a)\left(\frac{1}{2}\right)$
$\mathrm{a}=100 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{ma}=(0.1)(100)=10 \mathrm{~N}$
Q. 11 (3)
$v=-\left(\frac{v_{0}}{x_{0}}\right) x+v_{0}$
$a=\left[-\left(\frac{v_{0}}{x_{0}}\right) x+v_{0}\right]\left[-\frac{v_{0}}{x_{0}}\right]$
$\mathrm{a}=\left(\frac{\mathrm{v}_{0}}{\mathrm{x}_{0}}\right)^{2} \quad \frac{\mathrm{v}_{0}^{2}}{\mathrm{x}_{0}}$
Q. 12 (4)
Q. 13 (1)
Q. 14 (3)
Q. 15 (3)
Q. 16 (2)
Q. 17 (3)
Q. 18 (3)
Q. 19 (1)
Q. 20 (3)
Q. 21 (4)
Q. 22 [30]
Q. 23 [1]
$y=m x+C$
$\mathrm{V}^{2}=\frac{20}{10} \mathrm{x}+20$
$\mathrm{v}^{2}=2 \mathrm{x}+20$
$2 \mathrm{v} \frac{\mathrm{dv}}{\mathrm{dx}}=2$
$\therefore \mathrm{a}=\mathrm{v} \frac{\mathrm{dv}}{\mathrm{dx}}=1$
Q. 24 [12]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (B)

$\mathrm{m}=\frac{4 \pi \mathrm{R}^{2}}{3} \times \rho$
$\ln (m)=\ln \left(\frac{4 \pi}{3}\right)+\ln (\rho)+3 \ln (R)$
$0=0+\frac{1}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}+\frac{3}{\mathrm{R}} \frac{\mathrm{dR}}{\mathrm{dt}}$
$\Rightarrow\left(\frac{\mathrm{dR}}{\mathrm{dt}}\right)=\mathrm{v} \propto-\mathrm{R} \times \frac{1}{\rho}\left(\frac{\mathrm{~d} \rho}{\mathrm{dt}}\right)$
$\mathrm{v} \propto \mathrm{R}$
Q. 2 [2.00]
$\mathrm{n}=10^{-3} \mathrm{~kg} \mathrm{q}=1 \mathrm{Ct}=0$
$E=E_{0} \sin \omega t$

Force on particle will be
$\mathrm{F}=\mathrm{qE}=\mathrm{qE}_{0} \sin \omega \mathrm{t}$
at $\mathrm{v}_{\text {max }} \mathrm{a}, \mathrm{F}=0 \quad \mathrm{qE}_{0} \sin \omega \mathrm{t}=0$
$\mathrm{F}=\mathrm{qE}_{0} \sin \omega \mathrm{t}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{q} \frac{\mathrm{E}_{0}}{\mathrm{~m}} \sin \omega \mathrm{t}$

$$
\begin{aligned}
& \int_{0}^{\mathrm{v}} \mathrm{dv}=\int_{0}^{\pi / \omega} \frac{\mathrm{qE}}{\mathrm{~m}} \\
& \mathrm{~m}-0=\frac{\mathrm{qE}_{0}}{\mathrm{~m} \omega}[-\cos \omega \mathrm{t} \omega \mathrm{t}]_{0}^{\pi / \omega} \\
& \mathrm{v}-0=\frac{\mathrm{qE}_{0}}{\mathrm{~m} \omega}[(-\cos \pi)-(-\cos 0)] \\
& \mathrm{v}=\frac{1 \times 1}{10^{-3} 10^{3}} \times 2=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Relative Motion

EXERCISES

ELEMENTARY

Q. 1 (2)

Time $=\frac{\text { Total length }}{\text { Relative velocity }}=\frac{50+50}{10+15}=\frac{100}{25}=4 \mathrm{sec}$
Q. 2 (1)

Effective speed of the bullet
$=$ speed of bullet + speed of police jeep
$=180 \mathrm{~m} / \mathrm{s}+45 \mathrm{~km} / \mathrm{h}=(180+12.5) \mathrm{m} / \mathrm{s}=192.5 \mathrm{~m} / \mathrm{s}$
Speed of thief 's jeep $=153 \mathrm{~km} / \mathrm{h}=42.5 \mathrm{~m} / \mathrm{s}$
Velocity of bullet w.r.t thief 's car $=192.5-42.5=150 \mathrm{~m} / \mathrm{s}$
Q. 3 (1)

As the trains are moving in the same direction. So the initial relative speed $\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)$ and by applying retardation final relative speed becomes zero.

From $v=u-$ at $\Rightarrow 0=\left(v_{1}-v_{2}\right)-a t \Rightarrow t=\frac{v_{1}-v_{2}}{a}$.
Q. 4 (3)
Q. 5 (1)
Q. 6 (2)
Q. 7
(3) Given $\overrightarrow{\mathrm{AB}}=$ Velocity of boat $=8 \mathrm{~km} / \mathrm{hr}$

$\overrightarrow{\mathrm{AC}}=$ Resultant velocity of boat $=10 \mathrm{~km} / \mathrm{hr}$
$\overrightarrow{\mathrm{BC}}=$ Velocity of river $=\sqrt{\mathrm{AC}^{2}-\mathrm{AB}^{2}}$
$=\sqrt{(10)^{2}-(8)^{2}}=6 \mathrm{~km} / \mathrm{hr}$
Q. 8
(2)

The relative velocity of boat w.r.t. water

$$
=v_{\text {boat }}-v_{\text {water }}=(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}})-(-3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}})=(6 \hat{\mathrm{i}}+8 \hat{\mathrm{j}})
$$

$$
\begin{aligned}
& \frac{60 \mathrm{~m}}{5}=\sqrt{\mathrm{v}_{\mathrm{m}}^{2}-\mathrm{v}_{2}^{2}} \\
\Rightarrow & 144+5^{2}=\mathrm{v}_{\mathrm{m}}^{2} \\
\Rightarrow & \mathrm{v}_{\mathrm{m}}=13 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 10 (4)

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (2)

Total Length of 2 trains $=50+50=100$
Velocity $\mathrm{V}_{1}=10$
$\mathrm{V}_{2}=15$
$\mathrm{V}_{1}+\mathrm{V}_{2}=25$
time $=\frac{100}{25}=4 \mathrm{sec}$
Q. 2 (3)

$\mathrm{V}_{\mathrm{AB}}=10-5=5 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=\frac{100}{5}=20 \mathrm{sec}$.
Q. 3 (3)
$v_{1}=50-\mathrm{gT}$
$v_{2}=-50-\mathrm{gT}$
$\mathrm{v}_{\mathrm{r}}=\mathrm{v}_{1}-\mathrm{v}_{2}=100 \mathrm{~m} / \mathrm{sec}$
Q. 4 (4)

$$
\overrightarrow{\mathrm{V}}_{\mathrm{PT}}=\overrightarrow{\mathrm{V}}_{\mathrm{P}}-\overrightarrow{\mathrm{V}}_{\mathrm{T}}=10-9=1 \mathrm{~m} / \mathrm{s}
$$

So time taken $\quad \mathrm{t}=\frac{100}{\overrightarrow{\mathrm{~V}}_{\mathrm{PT}}}=\frac{100}{1}=100 \mathrm{sec}$.

Q. 5 (4)

Relative velocity between either car ($1^{\text {st }}$ or $2^{\text {nd }}$) and $3^{\text {rd }}$ car $=u+30$
where $\quad u=$ velocity of $3^{\text {rd }}$ car
Relative Displacement
$=5 \mathrm{~km}$
Time interval $=4 \mathrm{~min}$.

$$
\begin{array}{ll}
\therefore \mathrm{u}+30 & =\frac{5}{4} \mathrm{~km} / \mathrm{min} \\
=\frac{5 \times 60}{4} \mathrm{~km} / \mathrm{h}=75 & \Rightarrow \mathrm{u}=45 \mathrm{~km} / \mathrm{h}
\end{array}
$$

Q. 6
$\mathrm{V}_{\mathrm{rel}}=\frac{\mathrm{S}_{\mathrm{rel}}}{\mathrm{t}}=\frac{1000}{100}=10 \mathrm{~m} / \mathrm{s}$.
$\therefore \mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\mathrm{B}}=10$
$\Rightarrow V_{S}=10+V_{B}=10+10=20 \mathrm{~m} / \mathrm{s}$. Ans.
Q. 7 (2)

We have, $S_{\text {rel }}=u_{\text {rel }} t+\frac{1}{2} \mathrm{a}_{\text {rel }} \mathrm{t}^{2}$
$\Rightarrow 0=u t-\frac{1}{2}(\mathrm{a}+\mathrm{g}) \mathrm{t}^{2}$
$\Rightarrow \mathrm{a}=\frac{2 \mathrm{u}}{\mathrm{t}}-\mathrm{g}=\frac{2 \mathrm{u}-\mathrm{gt}}{\mathrm{t}}$
Q. 8 (3)

$t_{1}=3=\frac{2 L}{v_{1}+v_{2}}$
$\Rightarrow \mathrm{v}_{1}+\mathrm{v}_{2}=\frac{2 \mathrm{~L}}{3}$
$\mathrm{t}_{2}=2.5=\frac{2 \mathrm{~L}}{1.5 \mathrm{v}_{1}+\mathrm{v}_{2}} \quad 1.5 \mathrm{v}_{1}+\mathrm{v}_{2}=\frac{4 \mathrm{~L}}{5}$
...........(ii)
by (i) and (ii)
$\mathrm{v}_{1}=\frac{4 \mathrm{~L}}{15} ; \mathrm{v}_{2}=\frac{2 \mathrm{~L}}{5}$
Now, $t_{3}=\frac{2 L}{\left|v_{1}-v_{2}\right|}=\frac{2 L}{2 L / 15}=15 \mathrm{sec}$.
Q. 9 (1)

$$
\frac{25}{3} \mathrm{~m} / \mathrm{s}=30 \mathrm{~km} / \mathrm{h}
$$

Muzzle speed = velocity of bullet w.r.t. revolver $=$ velocity of bullet w.r.t. van
$150=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{v}}$
$150=\mathrm{V}_{\mathrm{b}}-\frac{25}{3} \Rightarrow \mathrm{~V}_{\mathrm{b}}=\frac{475}{3} \mathrm{~m} / \mathrm{s}$ w.r.t. ground
Now speed with which bullet hit thief's car
$=$ velocity of bullet w.r.t car
$=V_{b c}=V_{b}-V_{c}$
$=\frac{475}{3}-\frac{160}{3}=\frac{315}{3}=105 \mathrm{~m} / \mathrm{s}$ Ans.
Q. 10 (4)

Initial relative velocity
$u_{\mathrm{r}}=50-(-50)=100$
$\mathrm{a}_{\mathrm{r}}=20-(20)=0$
$\mathrm{s}_{\mathrm{r}}=v_{\mathrm{r}} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{r}} \mathrm{t}^{2}$
$\begin{array}{ll}100=100 \mathrm{t} & \mathrm{t}=1 \mathrm{hr} \\ \mathrm{S}_{\mathrm{A}}=50(1)+\frac{1}{2}(20)(1)^{2} & =60 \mathrm{~km} .\end{array}$
Q. 11 (1)

In opposite direction
$\overrightarrow{\mathrm{V}}_{\mathrm{AB}}=\overrightarrow{\mathrm{V}}_{\mathrm{A}}+\overrightarrow{\mathrm{V}}_{\mathrm{B}}$
$9=\overrightarrow{\mathrm{V}}_{\mathrm{A}}+\overrightarrow{\mathrm{V}}_{\mathrm{B}}$

In same direction -
$\overrightarrow{\mathrm{V}}_{\mathrm{AB}}=\overrightarrow{\mathrm{V}}_{\mathrm{A}}-\overrightarrow{\mathrm{V}}_{\mathrm{B}}$
$1=\overrightarrow{\mathrm{V}}_{\mathrm{A}}-\overrightarrow{\mathrm{V}}_{\mathrm{B}}$
From equation (1) \& (2)

$$
\begin{aligned}
& \overrightarrow{\mathrm{V}}_{\mathrm{A}}=5 \mathrm{~m} / \mathrm{s} \\
& \overrightarrow{\mathrm{~V}}_{\mathrm{B}}=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 12 (1)
Q. 13 (2)

If $v=$ actual velocity

$$
\begin{aligned}
\mathrm{v} & =\sqrt{15^{2}+8^{2}} \\
& =17 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 15 (4)
$\vec{V}_{r}=50(-\hat{j})-50 \hat{i}=50(-\hat{i}-\hat{j})$ i.e., in south
west
$\vec{V}_{12}=\overrightarrow{\mathrm{V}}_{1}-\overrightarrow{\mathrm{V}}_{2}$
$\left|\overrightarrow{\mathrm{V}}_{12}\right|=\sqrt{\mathrm{V}_{1}^{2}+\mathrm{V}_{2}^{2}-2 \mathrm{~V}_{1} \mathrm{~V}_{2} \cos \theta}$
If $\cos \theta=-1$
$\left|\overrightarrow{\mathrm{V}}_{12}\right|_{\max }=\sqrt{\mathrm{V}_{1}^{2}+\mathrm{V}_{2}^{2}+2 \mathrm{~V}_{1} \mathrm{~V}_{2}}$
$\left|\overrightarrow{\mathrm{V}}_{12}\right|_{\text {max }}=\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
So $\left|\overrightarrow{\mathrm{V}}_{12}\right|$ is maximum when $\cos \theta=-1$ and $\theta=\pi$
Q. 16 (3)

$$
\overrightarrow{\mathrm{V}}_{1}=10 \hat{\mathrm{i}}
$$

$$
\begin{aligned}
& \vec{V}_{2}=v \sin ^{2} 30 \hat{i}+v \cos 30 \hat{j}=\frac{v}{2} \hat{i}+\frac{v \sqrt{3}}{2} \hat{j} \\
& \overrightarrow{\mathrm{~V}}_{2}-\overrightarrow{\mathrm{V}}_{1}=\left(\frac{v}{\mathrm{o}}-10\right) \hat{\mathrm{i}}+\frac{v \sqrt{3}}{2} \hat{j}=\frac{v \sqrt{3}}{2} \hat{j} \\
& \therefore \frac{v}{2}-10=0 \\
& v=20
\end{aligned}
$$

Q. 17 (4)

$$
\begin{array}{ll}
\overrightarrow{\mathrm{V}}_{1}=\hat{\mathrm{i}}+\sqrt{3} \hat{\mathrm{j}} & \tan \theta_{1}=\sqrt{3} \\
\text { i.e., } \theta_{1}=60 . & \\
\overrightarrow{\mathrm{V}}_{2}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}} & \tan \theta_{2}=1 \\
\text { i.e., } \theta_{2}=45^{\circ} & \theta_{1}-\theta_{2}=15^{\circ}
\end{array}
$$

Q. 18 (2)
Q. 19 (1)

$$
\overrightarrow{\mathrm{V}}_{\mathrm{r}}=\mathrm{v}_{\mathrm{y}} \mathrm{j}
$$

$$
\overrightarrow{\mathrm{v}}_{\mathrm{m}}=5 \hat{\mathrm{i}}
$$

$$
\overrightarrow{\mathrm{V}}_{\mathrm{r}}-\overrightarrow{\mathrm{V}}_{\mathrm{m}}=(-5) \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}
$$

$$
\tan \theta=1=\frac{v_{y}}{5}
$$

$$
\text { so } v_{y}=5 \mathrm{~km} / \mathrm{hr}
$$

Q. 20 (2)
$\overrightarrow{\mathrm{V}}_{\mathrm{r}}=10 \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{V}}_{\mathrm{c}}=v \hat{\mathrm{i}}$
$\vec{V}_{r}-\vec{V}_{c}=10 \hat{j}-v \hat{i}$

$$
\begin{aligned}
& \left|\overrightarrow{\mathrm{V}}_{\mathrm{r}}-\overrightarrow{\mathrm{V}}_{\mathrm{c}}\right|=\sqrt{10^{2}+\mathrm{v}^{2}}=20 \\
& v=10 \sqrt{3}
\end{aligned}
$$

Q. 21 (1)

$\overrightarrow{\mathrm{V}}_{\mathrm{RM}}=\overrightarrow{\mathrm{v}}_{\mathrm{R}}-\overrightarrow{\mathrm{v}}_{\mathrm{m}}$
so $v_{R}=v_{M}$
Q. 22 (2)
$15 \mathrm{~min}=1 / 4 \mathrm{hr}$.

Q. 23 (2)
$\mathrm{T}_{0}=\frac{\mathrm{d}}{\mathrm{V}}+\frac{\mathrm{d}}{\mathrm{V}}=\frac{2 \mathrm{~d}}{\mathrm{~V}}$
$\mathrm{T}=\frac{\mathrm{d}}{\mathrm{V}+\mathrm{u}}+\frac{\mathrm{d}}{\mathrm{V}-\mathrm{u}}=\frac{2 \mathrm{Vd}}{\mathrm{V}^{2}-\mathrm{u}^{2}}$
$\mathrm{T}=\frac{\mathrm{V}^{2} \mathrm{~T}_{0}}{\mathrm{~V}^{2}-\mathrm{u}^{2}}=\frac{\mathrm{T}_{0}}{1-\frac{\mathrm{u}^{2}}{\mathrm{~V}^{2}}}$
$\frac{\mathrm{T}}{\mathrm{T}_{0}}=\frac{1}{1-\frac{\mathrm{u}^{2}}{\mathrm{~V}^{2}}}$
Q. 24 (3)
viewing the motion from river frame ; both boats will reach the ball simultaneously
Q. 25 (1)

Due north will take him cross in shortest time.
Q. 26 (2)

$$
\begin{aligned}
& \underbrace{\overrightarrow{\mathrm{V}}_{\mathrm{mR}}}_{\mathrm{V}_{\mathrm{MR}}=\frac{60}{5}=12}{ }_{\overrightarrow{\mathrm{V}}_{\mathrm{MR}}=\overrightarrow{\mathrm{V}}_{\mathrm{M}, \mathrm{~g}}-\overrightarrow{\mathrm{V}}_{\mathrm{R}}}^{\mathrm{V}_{\mathrm{R}}=5 \mathrm{~m} / \mathrm{s}} \\
& \overrightarrow{\mathrm{~V}}_{\mathrm{M}}=\overrightarrow{\mathrm{V}}_{\mathrm{MR}}+\overrightarrow{\mathrm{V}}_{\mathrm{R}} \\
& =\sqrt{12^{2}+5^{2}}=13 \mathrm{~ms}^{-1}
\end{aligned}
$$

Q. $27 \quad$ (2)

$\mathrm{a}=8 \mathrm{~m}$
They meet when Q displace $8 \times 3 \mathrm{~m}$
more than $\mathrm{p} \Rightarrow$ relative displacement $=$ relative
velocity \times time.
$8 \times 3=(10-2) t$
$\mathrm{t}=3 \mathrm{sec}$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

Relative velocity between either car ($1^{\text {st }}$ or $2^{\text {nd }}$) and $3^{\text {rd }}$
car $=u+30$
where $u=$ velocity of $3^{\text {rd }}$ car
Relative Displacement $=5 \mathrm{~km}$
Time interval $=4 \mathrm{~min}$.
$\therefore \mathrm{u}+30=\frac{5}{4} \mathrm{~km} / \mathrm{min}$
$=\frac{5 \times 60}{4} \mathrm{~km} / \mathrm{h} .=75 \Rightarrow \mathrm{u}=45 \mathrm{~km} / \mathrm{h}$.
Q. 2 (B)

We have, $S_{\text {rel }}=u_{\text {rel }} t+\frac{1}{2} a_{\text {rel }} t^{2}$
$\Rightarrow 0=u t-\frac{1}{2}(a+g) t^{2}$
$\Rightarrow \mathrm{a}=\frac{2 \mathrm{u}}{\mathrm{t}}-\mathrm{g}=\frac{2 \mathrm{u}-\mathrm{gt}}{\mathrm{t}}$
Q. 3 (C)

$\mathrm{t}_{1}=3=\frac{2 \mathrm{~L}}{\mathrm{v}_{1}+\mathrm{v}_{2}} \Rightarrow \mathrm{v}_{1}+\mathrm{v}_{2}=\frac{2 \mathrm{~L}}{3}$
$\mathrm{t}_{2}=2.5=\frac{2 \mathrm{~L}}{1.5 \mathrm{v}_{1}+\mathrm{v}_{2}}$
$1.5 \mathrm{v}_{1}+\mathrm{v}_{2}=\frac{4 \mathrm{~L}}{5}$
by (i) and (ii)

$$
\mathrm{v}_{1}=\frac{4 \mathrm{~L}}{15} ; \mathrm{v}_{2}=\frac{2 \mathrm{~L}}{5}
$$

Now, $\mathrm{t}_{3}=\frac{2 \mathrm{~L}}{\left|\mathrm{v}_{1}-\mathrm{v}_{2}\right|}=\frac{2 \mathrm{~L}}{2 \mathrm{~L} / 15}=15 \mathrm{sec}$.
Q. 4 (C)

No. of taxi $=\frac{240}{10}=24$ but when 24th start motion it reach the destination so it will meet 23 only.
Q. 5 (A)

Let t be time when car catches the motor cycle
So $\mathrm{vt}=100+\frac{1}{2} \mathrm{at}^{2} \Rightarrow \mathrm{at}^{2}-2 \mathrm{vt}+200=0$
t should be real $\mathrm{D} \geq 0$

$$
\begin{aligned}
& 4 \mathrm{v}^{2}-800 \mathrm{a} \geq 0 \\
& \frac{4 \times 20 \times 20}{800} \geq a \quad \Rightarrow a \leq 2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 6
(C)

A	B	BA
$\begin{aligned} & \mathrm{u}_{\mathrm{x}}=0 \\ & \therefore \text { horizontal } \end{aligned}$	$\mathrm{u}_{\mathrm{x}}=\mathrm{u}$	$\mathrm{u}_{\mathrm{x}}=\mathrm{u}$
$\mathrm{u}_{\mathrm{y}}=0$	$u_{y}=0$	0
$\downarrow \mathrm{a}_{\mathrm{x}}=0$	$\mathrm{a}_{\mathrm{x}}=0$	0
$a_{y}=\mathrm{g}$	$\mathrm{a}_{\mathrm{y}}=\mathrm{g}$	0

(D)

At $\mathrm{t}=3 \mathrm{sec}, 1^{\text {st }}$ stone will have speed of $30 \mathrm{~m} / \mathrm{s}$
$\mathrm{h}_{1}=\frac{1}{2} \times 10 \times 9=45 \mathrm{~m} ; \mathrm{h}_{2}=\frac{1}{2} \times 10 \times 1^{2}=5 \mathrm{~m}$
$\mathrm{h}_{1}-\mathrm{h}_{2}=40 \mathrm{~m}$
Q. 8 (B)

With respect to lift initial speed $=v_{0}$

$$
\begin{aligned}
& \text { acceleration }=-2 \mathrm{~g} \\
& \text { displacement }=0 \quad \therefore \mathrm{~S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \\
& 0=v_{0} \mathrm{~T}^{\prime}+\frac{1}{2} \times 2 \mathrm{~g} \times \mathrm{T}^{\prime 2} \\
& \therefore \mathrm{~T}^{\prime}=\frac{v_{0}}{\mathrm{~g}}=\frac{1}{2} \times \frac{2 v_{0}}{\mathrm{~g}}=\frac{1}{2} \mathrm{~T}
\end{aligned}
$$

Q. 9 (C)

Relative to the person in the train, acceleration of the stone is ' g ' downward, a (acceleration of train) backwards.
According to him :
$\mathrm{x}=\frac{1}{2} \mathrm{at}^{2}, \quad \mathrm{Y}=\frac{1}{2} \mathrm{gt}^{2}$
$\Rightarrow \frac{X}{Y}=\frac{\mathrm{a}}{\mathrm{g}} \Rightarrow \mathrm{Y}=\frac{\mathrm{g}}{\mathrm{a}} \mathrm{x} \Rightarrow$ straight line.
Q. 10 (D)

Let particle is projected at angle θ with horizontal

So, path observed by B is parabolic (projectile motion).
Q. 11 (C)

Relative to B , particle A is moving around it with constant speed v.

So, w.r.t. B, A appears to be move in circle motion.
Q. 12 (C)
Q. 13 (A)

$$
\mathrm{V}_{\mathrm{bt}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{t}}
$$

(A) If train is accelerating then the ball will cover less distance with respect to train in later part of motion.
Q. 14 (A)

$\overrightarrow{\mathrm{v}}_{\mathrm{RM}}=\overrightarrow{\mathrm{v}}_{\mathrm{R}}-\overrightarrow{\mathrm{v}}_{\mathrm{m}}$
$\mathrm{v}_{\mathrm{R}} \cos 60^{\circ}+\mathrm{v}_{\mathrm{M}}=\mathrm{v}_{\mathrm{RM}} \cos 30^{\circ}$
(1) $\mathrm{V}_{\mathrm{R}} \sin 60^{\circ}=\mathrm{V}_{\mathrm{RM}} \sin 30^{\circ}$
(2) Putting this in equation (1)
$\mathrm{v}_{\mathrm{R}} \frac{1}{2}+25=\mathrm{v}_{\mathrm{R}} \sqrt{3} \cdot \frac{\sqrt{3}}{2}$

$$
\begin{gathered}
\Rightarrow \quad \mathrm{V}_{\mathrm{R}}\left(\frac{3}{2}-\frac{1}{2}\right)=25 \\
\mathrm{v}_{\mathrm{R}}=25 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Q. 15 (A)

$$
\mathrm{V}_{\text {ball, bay }}=\hat{\mathrm{j}}
$$

Q. 16 (B)

$$
\mathrm{T}_{1}=\frac{2 \mathrm{~b}}{\sqrt{\mathrm{v}_{\mathrm{m}}^{2}-\mathrm{v}_{\mathrm{R}}^{2}}}
$$

(1)

$$
T_{2}=\frac{b}{v_{m}+v_{R}}+\frac{b}{v_{m}-v_{R}}
$$

$$
\Rightarrow \mathrm{T}_{2}=\frac{2 \mathrm{bv}_{\mathrm{m}}}{\mathrm{v}_{\mathrm{m}}^{2}-\mathrm{v}_{\mathrm{R}}^{2}}
$$

$$
\begin{equation*}
\Rightarrow \frac{2 b}{v_{m}^{2}-v_{R}^{2}}=\frac{T_{2}}{v_{m}} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{T}_{3}=\frac{2 \mathrm{~b}}{\mathrm{v}_{\mathrm{m}}} \tag{3}
\end{equation*}
$$

squaring (1) $\quad T_{1}^{2}=\frac{2 b}{v_{m}^{2}-v_{R}^{2}} \times 2 b$
$\Rightarrow \quad \mathrm{T}_{1}^{2}=\mathrm{T}_{2} \cdot \mathrm{~T}_{3}$
Q. 17 (C)
$\overrightarrow{\mathrm{v}}_{\mathrm{mR}}=\overrightarrow{\mathrm{v}}_{\mathrm{m}}-\overrightarrow{\mathrm{v}}_{\mathrm{R}}$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{m}}=5 \hat{\mathrm{i}}+5 \sqrt{3}((-\sin (\theta+30) \hat{\mathrm{i}}+\cos (\theta+30) \hat{\mathrm{j}}) \\
& \mathrm{v}_{\mathrm{m}}=(5-5 \sqrt{3} \sin (\theta+30)) \hat{i}+5 \sqrt{3} \cos (\theta+20) \hat{\mathrm{j}}
\end{aligned}
$$

$$
\tan 30^{\circ}=\frac{5-5 \sqrt{3} \sin (\theta+30)}{5 \sqrt{3} \cos (\theta+30)} \Rightarrow \theta=-30^{\circ}
$$

Q. 18 (B)

For least drift $\sin \theta=\frac{\mathrm{v}_{\mathrm{mR}}}{\mathrm{v}_{\mathrm{R}}}=\frac{5}{6}$

$$
\mathrm{x}=\frac{\mathrm{d}}{\mathrm{v}_{\mathrm{mR}} \cos \theta}\left(\mathrm{v}_{\mathrm{R}}-\mathrm{v}_{\mathrm{mR}} \sin \theta\right)
$$

Q. 19
(B)

$$
\begin{align*}
& \vec{v}_{A B}=v(\hat{j}+\hat{i})=\vec{v}_{A}-\vec{v}_{B} \tag{1}\\
& \vec{v}_{B C}=v(-\hat{i}+\hat{j})=\vec{v}_{B}-\vec{v}_{C} \tag{2}
\end{align*}
$$

adding (1) \& (2)

$$
\vec{v}_{\mathrm{A}}-\overrightarrow{\mathrm{v}}_{\mathrm{C}}=2 \mathrm{v} \hat{\mathrm{j}}
$$

Hence towards North
Q. 20 (D)

Let $\mathrm{h}=$ height of escalator
$\mathrm{v}=$ speed of escalator
$\mathrm{u}=$ speed of walking of man
$\mathrm{t}_{3}=$ time taken to reach tower if man walks up on a moving escalator.

$$
\begin{aligned}
\mathrm{h} & =\mathrm{vt}_{1}=\mathrm{ut}_{2}=(\mathrm{v}+\mathrm{u}) \mathrm{t}_{3} \\
\Rightarrow \mathrm{t}_{3} & =\frac{\mathrm{h}}{\mathrm{v}+\mathrm{u}} ; \mathrm{v}=\frac{\mathrm{h}}{\mathrm{t}_{1}} ; \mathrm{u}=\frac{\mathrm{h}}{\mathrm{t}_{2}} \\
\therefore \quad \mathrm{t}_{3} & =\frac{1}{\frac{1}{\mathrm{t}_{1}}+\frac{1}{\mathrm{t}_{2}}}=\frac{\mathrm{t}_{1} \mathrm{t}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}} \text { Ans. }
\end{aligned}
$$

(B)

A and B collide if $\frac{\overrightarrow{\mathrm{r}}_{\mathrm{B}}-\overrightarrow{\mathrm{r}}_{\mathrm{A}}}{\left|\overrightarrow{\mathrm{r}}_{\mathrm{B}}-\overrightarrow{\mathrm{r}}_{\mathrm{A}}\right|}= \pm \frac{\overrightarrow{\mathrm{V}}_{\mathrm{B}}-\overrightarrow{\mathrm{V}}_{\mathrm{A}}}{\left|\overrightarrow{\mathrm{V}}_{\mathrm{B}}-\overrightarrow{\mathrm{V}}_{\mathrm{A}}\right|}$

$$
=\frac{4 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}}{4 \sqrt{2}}= \pm \frac{(\mathrm{x}-3) \hat{\mathrm{i}}-4 \hat{\mathrm{j}}}{\left|(\mathrm{x}-3)^{2}+4^{2}\right|}
$$

By compare

$$
x-3=-4 \Rightarrow \quad x=-1
$$

Q. 22
(C)

$$
\begin{aligned}
& \tan \theta=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}} \\
& \mathrm{r}_{\text {min }}=\mathrm{d} \sin \theta \\
& =\mathrm{d} \cdot \frac{\mathrm{v}_{1}}{\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}}} .
\end{aligned}
$$

JEE-ADVANCED
 MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (B,C,D)

Q. 2 (B,C)
Q. 3 (A,B)
Q. 4 (A,B,D)
Q. 5 (A,B,C)
Q. 6 (C,D)
Q. 7 (A,D)
Q. 8 (A,B,D)
Q. 9 (A, C)
Q. 10 (B, D)
Q. 11 (B)
Q. 12 (B)

The path of a projectile as observed by other projectile is a straight line.

$$
\begin{gathered}
V_{A}=u \cos \theta \hat{i}+(u \sin \theta-g t) \hat{j} \cdot V_{A B}=(2 u \cos \theta) \hat{i} \\
V_{B}=-u \cos \theta \hat{i}+(u \sin \theta-g t) \hat{j} . \\
a_{B A}=g-g=0
\end{gathered}
$$

The vertical component $u_{0} \sin \theta$ will get cancelled. The relative velocity will only be horizontal which is equal to $2 \mathrm{u}_{0} \cos \theta$.
Hence B will travel horizontally towards left w.r.t. A with constant speed $2 \mathrm{u}_{0} \cos \theta$ and minimum distance will be h.

Q. 13 (C)

Time to attain this separation will obviously be $\frac{\mathrm{S}_{\text {rel }}}{\mathrm{V}_{\text {rel }}}=\frac{\ell}{2 \mathrm{u}_{0} \cos \theta}$.
Q. 14 (D)
Q. 15 (A)
Q. 16 (B)

In the first case :
From the figure it is clear that

$\vec{V}_{R M}$ is $10 \mathrm{~m} / \mathrm{s}$ downwards and
\vec{V}_{M} is $10 \mathrm{~m} / \mathrm{s}$ towards right.

In the second case :

Velocity of rain as observed by man becomes $\sqrt{3}$ times in magnitude.
\therefore New velocity of rain
$\vec{V}_{R^{\prime}}=\vec{V}_{R^{\prime} M}+\vec{V}_{M}$
\therefore The angle rain makes with vertical is

$$
\tan \theta=\frac{10}{10 \sqrt{3}} \quad \text { or } \theta=30^{\circ}
$$

\therefore Change in angle of rain $=45-30=15^{\circ}$.
Q. 17 (D)
Q. 18 (C)
Q. 19 (A)
Q. 20 (A)
$3 \mathrm{~km}=(5+3) \mathrm{t}+(5-3) \mathrm{t}$
So, $\mathrm{t}=\frac{3 \mathrm{~km}}{10 \mathrm{~km} / \mathrm{hr}}=\frac{3}{10} \mathrm{hr} .=18 \mathrm{~min}$.
Q. 21 (C)
$\mathrm{t}_{\text {cross }}$ for Mahiwal : $\frac{3 \mathrm{~km}}{5 \mathrm{~km} / \mathrm{hr}}=36 \mathrm{~min}$.
$\operatorname{drift}(\mathrm{d})=(2.5 \mathrm{~km} / \mathrm{hr})\left(\frac{3 \mathrm{~km}}{5 \mathrm{~km} / \mathrm{hr}}\right)=\frac{3}{2} \mathrm{~km}$

$\mathrm{t}_{\text {cross }}$ for Soni $=\frac{3 \mathrm{~km}}{5 \cos \theta}$
drift' $=(3-\mathrm{d})=(5 \sin \theta-2.5) \frac{3}{5 \cos \theta}$
$3-\frac{3}{2}=\left(5 \sin \theta-\frac{5}{2}\right) \frac{3}{5 \cos \theta}$
$\frac{3}{2}=\left(\frac{2 \sin \theta-1}{2}\right) \frac{3}{\cos \theta}$
$\cos \theta=2 \sin \theta-1 \quad \Rightarrow \theta=53^{\circ}$
So angle with river flow $=90^{\circ}+53^{\circ}=143^{\circ}$
Q. 22 (C)
$\mathrm{V}_{\mathrm{R} / \mathrm{S}}=\sqrt{3^{2}+4^{2}}=5 \mathrm{~m} / \mathrm{s}$
Q. 23 (D)

$\tan 53^{\circ}=\frac{y}{20}$
$y=20 \times \frac{4}{3}=\frac{80}{3}$
$\sin 37^{\circ}=\frac{\mathrm{d}}{40-\frac{80}{3}} \quad \mathrm{~d}=\frac{3}{5}\left[\frac{40}{3}\right]=8 \mathrm{~m}$
Q. 24 (A)

$$
\tan 37^{\circ}=\frac{8}{\mathrm{BC}}
$$

$$
\Rightarrow \frac{3}{4}=\frac{8}{\mathrm{BC}}
$$

$$
\sin 53^{\circ}=\frac{80}{3 \mathrm{AB}}
$$

$$
\Rightarrow t=\frac{\frac{32}{3}+\frac{100}{3}}{5}=\frac{132}{15}=8.8 \mathrm{sec}
$$

Q. 25 (A) Q (B) R (C) S (D) T
Q. 26 (A) P(B)R(C)Q

(B)

(C)

Q. 27

> (A)-R; (B)-S; (C)-P; (D)-Q
(A) $\mathrm{V}_{\mathrm{mR}} \sin \theta=\mathrm{V}_{\mathrm{R}}$

$\Rightarrow \sin \theta=\frac{4}{5}$
$\Rightarrow \theta=53^{\circ}$
$\Rightarrow \theta+90=143^{\circ}$
(B) Direction of velocity with the direction of flow $=$ 90°
(C) $\tan \theta=\frac{4}{3} \Rightarrow \quad \theta=53^{\circ}$
(D) $\overrightarrow{\mathrm{V}}_{\mathrm{w}}=-3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$

$\Rightarrow \quad \vec{V}_{\mathrm{m}}=-7 \hat{\mathrm{i}}$

$\overrightarrow{\mathrm{V}}_{\mathrm{wm}}=\overrightarrow{\mathrm{V}}_{\mathrm{w}}-\overrightarrow{\mathrm{V}}_{\mathrm{m}}$
$=-3 \hat{i}-3 \hat{j}+7 \hat{i}=4 \hat{i}-3 \hat{j}$
$\tan \theta=\frac{3}{4} \Rightarrow \theta=37^{\circ} \Rightarrow \theta+90=127^{\circ}$
Q. 28 (A) P,Q,R (B) Q, R, S (C) Q,R,S
Q. 29 (A) q, (B) q, (C) q, (D) q

In all cases, angle between velocity and net force (in the frame of observer) is in between 0° and 180° (excluding both values, in that path is straight line).
Q. 30 (A) q, (B) r (C) p (D) q
(A) $\mathrm{V}_{\mathrm{BA}}=10+10=20$
so distance b / w B and A in $2 \mathrm{sec} .=2 \times 20=40 \mathrm{~m}$
(B) ${ }^{4} 10 \mathrm{~m} / \mathrm{s} \mathrm{m} / \mathrm{s} \quad \overrightarrow{\mathrm{V}}_{B A}=5 \hat{\mathrm{i}}-10 \hat{\mathrm{j}}$
$\Rightarrow\left|\mathrm{V}_{\mathrm{BA}}\right|=\sqrt{25+100}=5 \sqrt{5}$
(C)

so distance between A and B in $2 \mathrm{sec} .=2 \times 8 \sqrt{5}$
$=16 \sqrt{5}$
(D) $\overrightarrow{\mathrm{V}}_{\mathrm{BA}}:-\overbrace{\text { :- }}^{10 \sin 37^{\circ}+10 \sin 37^{\circ}}$ so $37^{\circ}+10 \cos 37^{\circ}$
$\left|\vec{V}_{B A}\right|=20$
so distance between A and B in 2 sec. $=2 \times 20=40$ m.

NUMERICAL VALUE BASED

Q. $1 \quad$ [0015]

$\left(\mathrm{v}_{\text {glider ground }}\right)=\mathrm{u}$
$u \cos 37^{\circ}=12 \sqrt{2} \sin 45^{\circ} \quad u=15 \mathrm{~m} / \mathrm{s}$
Q. 2 [0000]

$$
\overrightarrow{\mathrm{v}}_{\mathrm{AB}}=\overrightarrow{\mathrm{v}}_{\mathrm{A}}-\overrightarrow{\mathrm{v}}_{\mathrm{B}}=-20 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}
$$

Q. 3 [12]

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b} \omega}^{2}-\mathrm{V}_{1}^{2}=\mathrm{V}_{\mathrm{b}}^{2} \\
& \mathrm{~V}_{\mathrm{b}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{b}}=12 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 4 [0016]

$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{R}}$
$53^{\circ}=\theta+37^{\circ}$
$\theta=16^{\circ}$]
Q. 5 [0001]
$2.5=\frac{1}{2} \times 10 \times \frac{\mathrm{t}^{2}}{2}$
$\mathrm{t}=1 \mathrm{sec}$.
[16]

$\mathrm{v}_{\mathrm{WB}}=\overrightarrow{\mathrm{v}}_{\mathrm{B}}-\overrightarrow{\mathrm{v}}_{\mathrm{B}}$
$\tan 53^{\circ}=\frac{\mathrm{v}_{\mathrm{w}}}{12}=\frac{4}{3}$
$\mathrm{v}_{\mathrm{w}}=16 \mathrm{~ms}^{-1}$
Q. 7 [0010]
$3=\frac{\mathrm{d}}{7.5+2.5}+\frac{\mathrm{d}}{7.5-2.5}$
$3=\frac{\mathrm{d}}{10}+\frac{\mathrm{d}}{5} \Rightarrow 3=\frac{\mathrm{d}+2 \mathrm{~d}}{10}$
$\mathrm{d}=10 \mathrm{~km}$
Q. 8 [0017]

Ground frame :

$$
\begin{aligned}
& \text { River frame: } \\
& \overrightarrow{\mathrm{V}}_{\mathrm{BG}}=\overrightarrow{\mathrm{V}}_{\mathrm{BR}}+\overrightarrow{\mathrm{V}}_{\mathrm{RG}} \\
& \Rightarrow 5 \sqrt{3} \hat{\mathrm{i}}+5 \hat{\mathrm{j}}=-5 \sqrt{3} \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+\overrightarrow{\mathrm{V}}_{\mathrm{RG}} \\
& \therefore \overrightarrow{\mathrm{~V}}_{\mathrm{RG}}=10 \sqrt{3} \hat{\mathrm{i}} \\
& \therefore \mathrm{~V}_{\mathrm{RG}}=17.3 \mathrm{~m} / \mathrm{s} \\
& {[0007]} \\
& \begin{array}{l}
\text { Q. } 9
\end{array} \\
& \begin{array}{l}
\frac{3 \mathrm{~V}}{5}=\frac{12}{5} \\
\mathrm{~V}=4
\end{array} \\
& \frac{4 \mathrm{~V}}{5}=\frac{9}{5}+\mathrm{V}_{\mathrm{C}}=\frac{7}{5} \\
& \mathrm{~V}_{\mathrm{C}}=0+\mathrm{a}_{\mathrm{C}} \mathrm{t} \\
& \mathrm{a}_{\mathrm{C}}=7
\end{aligned}
$$

KVPY

PREVIOUS YEAR'S
Q. 1 (D)

To minimize the drifting

$$
\sin \theta=\frac{\mathrm{v}_{\mathrm{w}}}{\mathrm{v}_{\mathrm{bw}}}=\frac{1}{2}
$$

$\theta=30^{\circ}$
$90^{\circ}+\theta=120^{\circ}$
Q. 2 (D)

$\therefore \frac{\mathrm{P}}{3.18}=\sin 25^{\circ}$
$\mathrm{P}=3.18 \sin 25^{\circ}$
$=1.34 \mathrm{KM}$ along north
B $=3.18 \cos 25^{\circ}$
$=2.88 \mathrm{KM} \rightarrow$ along east

JEE-MAIN

PREVIOUS YEAR'S
Q. $1 \quad$ [120]

$12 \sin \theta=\mathrm{vr}$
$\theta=30^{\circ}$
$\therefore \alpha=120^{\circ}$
Q. 2 [5]

$$
\begin{aligned}
& 10 \sin 30^{\circ}=x \\
& x=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 3 [5]

$8 \beta \mathrm{~d}=2.4 \mathrm{~cm}$
$\frac{8 \lambda \Delta}{d}=2.4 \mathrm{~cm}$
$\frac{8 \times 1.5 \times \mathrm{c}}{0.3 \times 10^{-3} \times \mathrm{f}}=2.4 \times 10^{-2}$
$\mathrm{f}=5 \times 10^{14} \mathrm{~Hz}$

Q. 4 [30]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (2)

consider motion of two balls with respect to rocket Maximum distance of ball A from left wall = $\frac{\mathrm{u}^{2}}{2 \mathrm{a}}=\frac{0.3 \times 0.3}{2 \times 2}=\frac{0.09}{4} \approx 0.02 \mathrm{~m}$
so collision of two balls will take place very near to left wall
For B

$$
\begin{aligned}
& S=u t+\frac{1}{2} a t^{2} \\
& -4=-0.2 \mathrm{t}-\left(\frac{1}{2}\right) 2 \mathrm{t}^{2} \\
\Rightarrow & \mathrm{t}^{2}+0.2 \mathrm{t}-4=0 \\
\Rightarrow & \mathrm{t}=\frac{-0.2 \pm \sqrt{0.04+16}}{2}=1.9
\end{aligned}
$$

nearest integer $=2 \mathrm{~s}$

Projectile

EXERCISES

ELEMENTARY

Q. 1 (3)

$$
\mathrm{v}_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}=6 \text { and } \mathrm{v}_{\mathrm{y}}=\frac{\mathrm{dy}}{\mathrm{dt}}=8-10 \mathrm{t}
$$

$$
=8-10 \times 0=8
$$

$$
\therefore \mathrm{v}=\sqrt{\mathrm{v}_{\mathrm{x}}^{2}+\mathrm{v}_{\mathrm{y}}^{2}}=\sqrt{6^{2}+8^{2}}=10 \mathrm{~ms}^{-1}
$$

Q. 2 (4)

$\mathrm{R}=\frac{\mathrm{u}^{2} \sin 20}{\mathrm{~g}} \therefore \mathrm{R} \propto \mathrm{u}^{2}$. If initial velocity be doubled then range will become four times.
Q. 3 (1)

Range $=\frac{u^{2} \sin 2 \theta}{\mathrm{~g}}$; when $\theta=90^{\circ}, \mathrm{R}=0$ i.e the body will
fall at the point of projection after completing one dimensional motion under gravity.
Q. 4 (1)

Direction of velocity is always tangent to the path so at the top of trajectory, it is in horizontal direction and acceleration due to gravity is always in vertically downward direction. It means angle between \vec{v} and \vec{g} are perpendicular to each other.
Q. 5 (1)

For vertical upward motion $h=u \mathrm{t}-\frac{1}{2} \mathrm{~g} t^{2}$
$5=(25 \sin \theta) \times 2-\frac{1}{2} \times 10 \times(2)^{2}$
$\Rightarrow 25=50 \sin \theta \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$.
Q. 6 (2)

Range is given by $\mathrm{R}=\frac{u^{2} \sin 2 \theta}{\mathrm{~g}}$
On moon $g_{m}=\frac{g}{6}$. Hence $\mathrm{R}_{\mathrm{m}}=6 \mathrm{R}$.
Q. 7 (3)

Due to constant velocity along horizontal and vertical downward force of gravity stone will hit the ground following parabolic path.
Q. 8 (1)

Horizontal component of velocity $v_{x}=500 \mathrm{~m} / \mathrm{s}$ and vertical components of velocity while striking the ground.
$v_{y}=0+10 \times 10=100 \mathrm{~m} / \mathrm{s}$

\therefore Angle with which it strikes the ground.
$\theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{100}{500}\right)=\tan ^{-1}\left(\frac{1}{5}\right)$.
Q. 9 (2)

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (2)
$V_{x}=2 \mathrm{at}$
$V_{y}=2 b t$

$$
\mathrm{V}=2 \mathrm{t} \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}
$$

Q. 2 (4)

Horizontal Component of velocity
Because there is no acceleration in horizontal Direction
Q. 3 (3)

In projectile motion Horizontal accelereation $\mathrm{a}_{\mathrm{x}}=\mathrm{o}$ \&
Vertical acceleration $a_{y}=g=10 \mathrm{~m} / \mathrm{s}^{2} \mathrm{a}_{\mathrm{x}}=0$
$\mathrm{a}_{\mathrm{x}}=0$
$a_{y}=10($ down $)$
\Rightarrow only " C " is correct Ans
Q. 4 (4)
$\theta_{1}=\frac{5 \pi}{36}$
Another angle for same range is the complementary angle θ_{2}
Then $\theta_{2}=\frac{\pi^{\prime}}{2}-\left(\frac{5 \pi}{36^{\circ}}\right)^{c}=\frac{18-5}{36} \pi \Rightarrow \theta_{2}=\frac{13}{36} \pi$
"D"
Q. 5 (1)

Avg. vel. b/w A \& $B=\frac{\overrightarrow{\mathrm{V}}_{1}+\overrightarrow{\mathrm{V}}_{2}}{2}$
$(\because$ Acceleration is constant $=\mathrm{g})$
Now, if $\vec{V}_{1}=V_{1 x} \hat{i}+V_{1 y} \hat{j}$
Thaǹ $\overrightarrow{\mathrm{V}}_{2}=\mathrm{V}_{1 \mathrm{x}} \hat{\mathrm{i}}-\mathrm{V}_{1 \mathrm{y}} \hat{\mathrm{j}}(\because$ both A \& B are at same lavel)
$\therefore \quad \frac{\overrightarrow{\mathrm{V}}_{1}+\overrightarrow{\mathrm{V}}_{2}}{2}=\mathrm{V}_{1 \mathrm{x}} \hat{\mathrm{i}}=\mathrm{V} \sin \theta \hat{\mathrm{i}}(\because \theta$ is from vertical $)$ " B "
Q. 6 (1)

Gravitational acceleration is constant near the surface of the earth.
Q. 7 (2)
$\overrightarrow{\mathrm{u}}_{\mathrm{x}}=6 \hat{\mathrm{l}}+8 \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{u}}_{\mathrm{x}}=6 \hat{\mathrm{l}}$
$\mathrm{u}_{\mathrm{y}}=8 \hat{\mathrm{j}}$
$\mathrm{R}=\frac{2 \mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}=\frac{2 \times 6 \times 8}{10}=9.6$
Q. 8
Q. 9
(4)
$\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}$
$R_{\text {max }}=u^{2} / g$
$22=\frac{\mathrm{u}^{2}}{\mathrm{~g}}$
for $\theta=15^{\circ}$
$\mathrm{R}=\frac{\mathrm{u}^{2} \sin 30}{\mathrm{~g}}=22 \times \frac{1}{2}=11 \mathrm{~m}$
(4)
$y=x \tan \theta\left(1-\frac{x}{R}\right)$
$y=x \tan \theta-\tan \theta \frac{x^{2}}{R}$
Compare from eq ${ }^{\mathrm{n}}$.
$\tan \theta=16$
$\frac{\tan \theta}{\mathrm{R}}=\frac{5}{4}$
$R=\frac{64}{5}=12.8 \mathrm{~m}$
$\tan \theta=16$
$\frac{1}{2} \frac{g}{u^{2} \cos ^{2} \theta}=\frac{5}{4.2}$
$\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}=\frac{2 \mathrm{~g}}{5} \times \frac{2 \times 16}{\mathrm{~g}}$
$R=12.8 \mathrm{~m}$
Q. 10 (3)

Range of θ and $90-\theta$ is same If $\theta=30^{\circ}$
So $90-\theta=60^{\circ}$
Q. 11 (3)

For both particles $u_{y}=0$ and $a_{y}=-g$ $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2} \Rightarrow \mathrm{~h} \rightarrow$ same $\Rightarrow \mathrm{t} \rightarrow$ same
Q. 12 (2)

In this process both time taken is same.

$$
\begin{aligned}
& \mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{~g}} \\
& \mathrm{~T}=\frac{2 \mathrm{u} \sin 37^{\circ}}{\mathrm{g}} \\
& =\frac{2 \times 15 \times 3}{10 \times 5}=1.8 \mathrm{Sec}
\end{aligned}
$$

Minimum Velocity $=\frac{9}{1.8}=5 \mathrm{~m} / \mathrm{s}$
Q. 13 (2)
$\therefore \mathrm{H}_{\text {max }}=\frac{\mathrm{u}_{\mathrm{y}}{ }^{2}}{2 \mathrm{~g}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{u}_{\mathrm{y}}=\sqrt{2 \mathrm{gH}} \\
& \therefore \mathrm{~T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{~g}}=\frac{2 \sqrt{2 \mathrm{gH}}}{\mathrm{~g}}=2 \sqrt{2} \sqrt{\frac{\mathrm{H}}{\mathrm{~g}}}
\end{aligned}
$$

Q. 14 (3)

$$
\mathrm{t}_{(\mathrm{OS})}=1 \mathrm{sec}
$$

$$
\mathrm{t}_{(\mathrm{OT})}=3
$$

or $\mathrm{t}_{(\mathrm{ST})}=\mathrm{t}_{(\mathrm{OT})}-\mathrm{t}_{(\mathrm{OS})}=3-1=2 \mathrm{sec}$
$\therefore \mathrm{t}_{(\mathrm{SM})}=\frac{1}{2} \mathrm{t}_{(\mathrm{ST})}=1 \mathrm{sec}$.
$\therefore \mathrm{t}_{(\mathrm{OM})}=\mathrm{t}_{(\mathrm{OS})}+\mathrm{t}_{(\mathrm{SM})}=1+1=2 \mathrm{sec}$.
\therefore Time of flight $=2 \times 2=4$ sec. Ans. "C"

Q. 15 (2)

As $\theta \uparrow, \mathrm{H}$ and T both increases
But $\mathrm{R} \uparrow$ from 0° to $45^{\circ} \&$ at $\theta=45^{\circ}$ Max then decreases
Ans (2) $\mathrm{R} \uparrow$ then $\downarrow\left[\theta\right.$ from from 30° to $\left.60^{\circ}\right]$
while $\mathrm{H} \uparrow$ and $\mathrm{T} \uparrow$.
Q. 16 (4)

Acute Angle of Velocity with horizontal possible is 90° to $+90^{\circ}$ hence angle with g is 0° to 180°.
θ_{1} is acute
$\Rightarrow 0^{\circ} \leq \theta_{1}<90^{\circ}$ (during the upward journey of mass)
from fig. $\theta=90^{\circ}+\theta_{1}$

or, $90^{\circ} \leq \theta<180^{\circ}$

During downward motion

$0^{\circ}<\theta_{2}<90^{\circ}$
$\theta=90^{\circ}-\theta_{2}$
$0^{\circ}<\theta<90^{\circ}$
Fromeq. (1) and (2)
i.e., $0<\theta<90^{\circ} \mathrm{U} 90^{\circ} \leq \theta<180^{\circ}$
$\Rightarrow 0^{\circ}<\theta<180^{\circ}$ "D" Ans.
Q. 17 (4)

$\mathrm{u}_{\mathrm{B}}=0 \mathrm{~m} / \mathrm{s} \quad \mathrm{u}_{\mathrm{A}}=10 \hat{\mathrm{i}}$

On reaching the ground,
Both will have same vertical velocity
$V_{y}{ }^{2}=u_{y}{ }^{2}+2 a_{y} s_{y}$
since $\mathrm{u}_{\mathrm{y}}=0$ for both $\mathrm{A} \& B$
$a_{y}=g$ for both A \& B
$\mathrm{s}_{\mathrm{y}}=20 \mathrm{~m}$ for both A \& B
Thats why the time taken by both are same
Q. 18
(4)

Let final vel be V_{2}
Now $\mathrm{v}_{2 \mathrm{x}}=$ horizontal component of velocity
$\mathrm{V}_{2 \mathrm{x}}=\mathrm{V} \cos \theta \& \mathrm{~V}_{2 \mathrm{y}}^{2}=(\mathrm{V} \sin \theta)^{2}+2(-\mathrm{g})(-\mathrm{H})$
$\therefore \quad \mathrm{V}_{2 \mathrm{y}}^{2}=\mathrm{V}^{2} \sin ^{2} \theta+2 \mathrm{gH}$
$\Rightarrow V^{2}{ }_{2}=V^{2}{ }_{2 x}+V^{2}{ }_{2 y}$
$=(\mathrm{V} \cos \theta)^{2}+\left[\mathrm{V}^{2} \sin ^{2} \theta+2 \mathrm{gH}\right]$
$\mathrm{V}_{2}^{2}=\mathrm{V}^{2}+2 \mathrm{gH}$
i.e., $\mathrm{V}=\sqrt{\mathrm{v}^{2}+2 \mathrm{gH}}\left\{\mathrm{V}_{2}=\sqrt{\mathrm{V}^{2}+2 \mathrm{gH}}\right\}$

This magnitude of final velocity is independent on θ \Rightarrow all particles strike the ground with the same speed.
i.e., ' A ' is correct.

In vertical motion
The highest velocity (initial) along the direction of displacement is possessed by particle (1). Hence particle (1) will reach the ground earliest. [since a_{y} and s_{y} are same for all]
i.e., 'C' is correct

Q. 19 (1)

$\mathrm{AC}=\frac{1}{2} \mathrm{gt}^{2}=45 \mathrm{~m} \quad \mathrm{BC}=45 \sqrt{3} \mathrm{~m}=\mathrm{u} . \mathrm{t}$
$u=\frac{45}{\sqrt{3}}=15 \sqrt{3} \mathrm{~m} / \mathrm{s}$.
Alter: Object is thrown horizontally so $u_{x}=v \& u_{y}=$ 0
from Diagram

$-y=u_{y} t-\frac{1}{2} g t^{2}$
$\mathrm{y}=\frac{1}{2} \times 10 \times(3)^{2}$
$y=45 m$
$\& \tan 30^{\circ}=\frac{y}{x} \Rightarrow y \sqrt{3}=x$
$\& \mathrm{x}=\mathrm{vt}=3 \mathrm{v}$
from equation (1), (2) \& (3)
$45 \sqrt{3}=3 \mathrm{v}$
$\mathrm{v}=15 \sqrt{3} \mathrm{~m} / \mathrm{s}$

Q. 20 (2)

$\tan 45^{\circ}=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}_{\mathrm{x}}}$

$$
\Rightarrow v_{y}=v_{x}=18 \mathrm{~m} / \mathrm{s} \text { Ans. }
$$

Q. 21 (4)
$\left(\mathrm{Y}_{\max }\right) \Rightarrow \frac{\mathrm{dY}}{\mathrm{dt}}=0$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}\left(10 \mathrm{t}-\mathrm{t}^{2}\right)=10-2 \mathrm{t} \Rightarrow \mathrm{t}=5$
$\Rightarrow Y_{\max }=10(5)-5^{2}=25 \mathrm{~m}$ Ans "D"
Q. 22 (4)
(i)

For θ and $90-\theta$
Range is ssame
$\theta=15^{0}$
$90-\theta=75^{0}$
(ii) $\mathrm{R}=\frac{\mathrm{u} \sin \theta \cdot \mathrm{u} \cos \theta}{\mathrm{g}}$
$\therefore \sin (90-\theta)=\cos \theta$
$\therefore \cos (90-\theta)=\sin \theta$
Q. 23 (2)
$\mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}$
At Highest Point
$\mathrm{vel}=\operatorname{vcos} \theta$
$\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2} \cos ^{2} \theta=\mathrm{E} \cos ^{2} \theta=\frac{\mathrm{E}}{2}\left(\therefore \theta=45^{\circ}\right)$
Q. 24 (2)

Vel. of Bomb is same as the vel. of aeroplane.
$u_{x}=360 \mathrm{~km} / \mathrm{h} \& \mathrm{v}_{\mathrm{y}}=0$.
$S_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2}$,
Here $\mathbf{u}=0$
$1960=\frac{1}{2} \times 9.8 \mathrm{t}^{2}$
$\mathrm{t}=20 \mathrm{sec}$
Q. 25 (3)

$$
v_{y}^{2}-u_{y}^{2}=2 a_{y} S
$$

$\mathrm{v}_{\mathrm{y}}{ }^{2}-(4)^{2}=-2 \times 10 \times 0.45$
$\mathrm{v}_{\mathrm{y}}{ }^{2}=7 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$\mathrm{v}_{\mathrm{x}}=5 \cos 53^{\circ}=3 \mathrm{~m} / \mathrm{s} \quad$ (always remains same)
$\therefore \mathrm{V}_{\text {net }}=\sqrt{\left(\mathrm{V}_{\mathrm{x}}\right)^{2}+\left(\mathrm{V}_{\mathrm{y}}\right)^{2}}=\sqrt{9+7}$
$=4 \mathrm{~m} / \mathrm{s}$
Q. 26 (2)

S $=\frac{1}{2} \mathrm{at}^{2}$
$\mathrm{h}=\frac{1}{2} \mathrm{gt}_{1}{ }^{2} \Rightarrow \mathrm{t}_{1}=\frac{\sqrt{2 \mathrm{~h}}}{\mathrm{~g}}$
$\mathrm{x}=\mathrm{v}_{1} \mathrm{t}_{1}$
$x=v \sqrt{\frac{2 h}{g}}$
$\mathrm{t}_{2}=\frac{\sqrt{4 \mathrm{~h}}}{\mathrm{~g}}, 2 \mathrm{x}=\mathrm{v}_{2} \times \mathrm{t}_{2}$
$2 \mathrm{x}=\mathrm{v}_{2} \sqrt{\frac{4 \mathrm{~h}}{\mathrm{~g}}}$
From (i) \& (ii)
$V^{\prime}=\sqrt{2} V$
Q. 27 (1)

Because horizontal velocity of plane and bomb is
always same.
Q. 28 (1)
$\mathrm{OB}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}}=5 \mathrm{~m}$

$\therefore \mathrm{AB}=\mathrm{OB} \sin 37^{\circ}=3 \mathrm{~m}$.
Q. 29 (3)

$u=10 \sqrt{3} \mathrm{~m} / \mathrm{s}$

Time of flight on the incline plane
$\mathrm{T}=\frac{2 \mathrm{u} \sin \alpha}{\mathrm{g} \cos \beta}$
given $\alpha=30^{\circ} \& \beta=30^{\circ} \& u=10 \sqrt{3} \mathrm{~m} / \mathrm{s}$
$\mathrm{T}=\frac{2 \times 10 \sqrt{3} \sin 30^{\circ}}{10 \cos 30^{\circ}}$
so $\mathrm{T}=2 \mathrm{sec}$.
Q. 30 (2)

At maximum height $\mathrm{v}=\mathrm{u} \cos \theta$

$$
\begin{aligned}
& \frac{\mathrm{u}}{2}=\mathrm{v} \\
\Rightarrow & \frac{\mathrm{u}}{2}=\mathrm{u} \cos \theta \\
\Rightarrow & \cos \theta=\frac{1}{2} \\
\Rightarrow & \theta=60^{\circ} \\
& \mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}=\frac{\mathrm{u}^{2} \sin \left(120^{\circ}\right)}{\mathrm{g}} \\
& =\frac{\mathrm{u}^{2} \cos 30^{\circ}}{\mathrm{g}}=\frac{\sqrt{3} \mathrm{u}^{2}}{2 \mathrm{~g}}
\end{aligned}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (A)

$$
\begin{aligned}
\mathrm{a}_{\mathrm{x}} & =2 \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{a}_{\mathrm{y}}=0 \\
\mathrm{u}_{\mathrm{x}} & =8 \mathrm{~m} / \mathrm{s} \\
\mathrm{u}_{\mathrm{y}} & =-15 \mathrm{~m} / \mathrm{s} . \\
\overrightarrow{\mathrm{V}} & =\mathrm{V}_{\mathrm{x}} \hat{i}+\mathrm{V}_{\mathrm{y}} \hat{\mathrm{j}} \\
\mathrm{~V}_{\mathrm{y}} & =\mathrm{u}_{\mathrm{y}}+\mathrm{a}_{\mathrm{y}} \mathrm{t} \\
\Rightarrow \mathrm{~V}_{\mathrm{y}} & =-15 \mathrm{~m} / \mathrm{s} \\
\mathrm{~V}_{\mathrm{x}} & =\mathrm{u}_{\mathrm{x}}+\mathrm{a}_{\mathrm{x}} \mathrm{t} \\
\mathrm{~V}_{\mathrm{x}} & =8+2 \mathrm{t} \\
\Rightarrow \mathrm{~V} & =[(8+2 \mathrm{t}) \hat{\mathrm{i}}-15 \hat{\mathrm{j}}] \mathrm{m} / \mathrm{s} .
\end{aligned}
$$

Q. 2 (D)
$u=3 \mathrm{~m} / \mathrm{s} \hat{\mathrm{i}} \mathrm{a}=1 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}^{2}$
a is $\perp \mathrm{u}$
so V after 4 sec
$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$\mathrm{V}=3 \hat{\mathrm{i}}+1 \hat{\mathrm{j}} \times 4$
$V=3 \hat{i}+4 \hat{j}$

$\vec{V}_{R}=\sqrt{u^{2}+v^{2}}=\sqrt{3^{2}+4^{2}}$
$\vec{V}_{R}=5 \mathrm{~m} / \mathrm{s}$
and $\tan \theta=\frac{4}{3}$
$\theta=\tan ^{-1}\left(\frac{4}{3}\right)$ with the direction of the initial velocity.
Q. 3 (B)
$\mathrm{x}=5 \sin 10 \mathrm{t} \Rightarrow \mathrm{v}_{\mathrm{x}}=\frac{\mathrm{dx}}{\mathrm{dt}}=50 \cos 10 \mathrm{t}$
$y=5 \cos 10 t \Rightarrow v_{y}=\frac{d y}{d t}=-50 \sin 10 t$
$\mathrm{V}_{\mathrm{net}}{ }=\mathrm{V}_{\mathrm{x}}{ }^{2}+\mathrm{v}_{\mathrm{y}}{ }^{2}$
$\mathrm{v}_{\text {net }}=\sqrt{(50)^{2}\left(\sin ^{2} 10 \mathrm{t}+\cos ^{2} 10 \mathrm{t}\right)}=50 \mathrm{~m} / \mathrm{sec}$
Q. 4 (D)
$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$\mathrm{V}_{\mathrm{y}}=$ reduced then increases

$\Rightarrow \mathrm{V}=$ reduced then increase $\left(\because \mathrm{V}_{\mathrm{x}}\right.$ is constant)
\Rightarrow Speed first reduces than increases. So "A" is not correct
$\mathrm{KE}=\frac{1}{2} \mathrm{mV}^{2}=\frac{\mathrm{m}}{2}(\text { speed })^{2}$
\Rightarrow " B " is not correct
$\mathrm{V}_{\mathrm{y}}=$ changes
\Rightarrow "C" is not correct.
$\mathrm{V}_{\mathrm{x}}=$ constt. since grairty is vertically down
\Rightarrow no component of acceleration along the horizontal direction.
\Rightarrow " D " is correct
Q. 6
(A)

$y=x \tan \theta-\frac{1}{2} g \frac{x^{2}}{u^{2} \cos ^{2} \theta}$

$$
5=20 \tan 30^{\circ}-\frac{1}{2} \times \frac{10 \times 20^{2}}{\mathrm{u}^{2} \cos ^{2} 30^{\circ}}
$$

$$
\Rightarrow u^{2}=\frac{1600}{\sqrt{3}(4-\sqrt{3})}=\frac{1600}{13 \sqrt{3}}(4+\sqrt{3})
$$

Q. 10 (D)

From the R v/s θ curve (for $\mathrm{u}=$ const.)
$R_{\max }=\frac{u^{2}}{g}=250 \Rightarrow u=50 \mathrm{~m} / \mathrm{sec}$.
$\mathrm{T}=1 / 2 \mathrm{~T}_{\text {max. }}$ possible

$$
\frac{2 \mathrm{u} \sin \theta}{\mathrm{~g}}=\frac{1}{2}\left(\frac{2 \mathrm{u}}{\mathrm{~g}}\right)
$$

$\Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=30^{\circ}$
Least speed during flight $=u \cos \theta=50 \cos 30=25 \sqrt{3}$
Q. 11 (B)
$\vec{V}=a \hat{i}+(b-c t) \hat{j}=u_{x} \hat{i}+\left(u_{y}-g t\right) \hat{j}$
$\mathrm{R}=\frac{2 \mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}=\frac{2 \mathrm{ab}}{\mathrm{c}}$
Q. 12 (C)

Touches at

$h=\frac{U_{y}^{2}}{2 g}$
$\mathrm{U}_{\mathrm{y}}=\sqrt{2 \mathrm{gh}}$
$R=U_{x} T=\frac{U \cdot \sqrt{2 g h}}{g} \quad \Rightarrow R=U \sqrt{\frac{2 h}{g}}$
Q. 13 (C)

Because horizontal component of the vel. is never
change in projectile motion.
Horizontal Component
$\mathrm{u} \cos \theta=\mathrm{v} \cos \alpha$
$\therefore \mathrm{v}=\mathrm{u} \cos \theta \sec \alpha$
Q. 14 (A)

we have the point of projection as $(0,0)$
we have the equation of st. line (as shown in fig.)

$$
\begin{align*}
& y=\tan \theta / x \\
& y=\frac{-2}{3} x \tag{1}
\end{align*}
$$

Also the equation of trajectory for horizantal projetion

$$
\begin{equation*}
\mathrm{y}=\frac{-1}{2} \mathrm{~g} \frac{\mathrm{x}^{2}}{\mathrm{u}^{2}} \tag{2}
\end{equation*}
$$

from (1) and (2)

$$
\begin{aligned}
& \quad \frac{1}{2} \mathrm{~g} \frac{\mathrm{x}^{2}}{\mathrm{u}^{2}}=\frac{2}{3} \mathrm{x} \\
& \text { or } \mathrm{X}=\frac{2}{3} \times \frac{\mathrm{u}^{2}}{5} \\
& =\frac{2}{3} \times \frac{4.5 \times 4.5}{5}=3 \times 0.9
\end{aligned}
$$

If no. of stps be n then $n \times 0.3=3 \times 0.9$
$\mathrm{n}=9$

Q. 15 (B)

To hit, $400 \cos \theta=200$
$\{\because$ Both travel equal distance along horizontal, of their start and coordinates of x axis are same $\}$
$\Rightarrow \theta=60^{\circ}$ Ans.

Q. 16 (C)

Let initial and final speeds of stone be u and v .
$\therefore \mathrm{v}^{2}=\mathrm{u}^{2}-2 \mathrm{gh}$
and $\mathrm{v} \cos 30^{\circ}=u \cos 60^{\circ}$
solving 1 and 2 we get
$u=\sqrt{3 g h}$
Q. 17 (D)

Since time of flight depends only on vertical component of velocity and acceleration. Hence time of flight is

$$
\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{~g}} \text { where } \mathrm{u}_{\mathrm{x}}=\cos \theta \text { and } \mathrm{u}_{\mathrm{y}}=\mathrm{u} \sin \theta
$$

\therefore In horizontal (x) direction
$\mathrm{d}=\mathrm{u}_{\mathrm{x}} \mathrm{t}+1 / 2 \mathrm{gt}^{2}=\mathrm{u} \cos \theta\left(\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}\right)+\frac{1}{2} \mathrm{~g}\left(\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}\right)^{2}$

$$
=\frac{2 \mathrm{u}^{2}}{\mathrm{~g}}\left(\sin \theta \cos \theta+\sin ^{2} \theta\right)
$$

We want to maximise $\mathrm{f}(\theta)=\cos \theta \sin \theta+\sin ^{2} \theta$
$\Rightarrow \mathrm{f}^{\prime} \theta=-\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=0$
$\Rightarrow \cos 2 \theta+\sin 2 \theta=0$
$\Rightarrow \tan 2 \theta=-1$
or $2 \theta=\frac{3 \pi}{4}$ or $\theta=\frac{3 \pi}{8}=67.5^{\circ}$

Alternate :

As shown in figure, the net acceleration of projectile makes on angle 45° with horizontal. For maximum range on horizontal plane, the angle of projection should be along angle bisector of horizontal and opposite direction of net acceleration of projectile.

$$
\therefore \theta=\frac{135^{\circ}}{2}=67.5^{\circ}
$$

Q. 18 (A)

From given conditions $\quad V_{A}=V_{B} \cos 37^{\circ}=$ $15 \cdot \frac{4}{5}=12 \mathrm{~m} / \mathrm{sec}$.
\therefore time of flight of A $(\mathrm{t})=\sqrt{\frac{2 \times 20}{10}}=2 \mathrm{sec}$.
\Rightarrow Range $=\mathrm{V}_{\mathrm{A}} \mathrm{t}=24 \mathrm{~m}$
Q. 19 (C)
$\mathrm{H}=20 \mathrm{~m}, \mathrm{u}_{\mathrm{y}}=0$
$+S_{y}=u_{y} t+\frac{1}{2} g t^{2} \therefore \quad t=\sqrt{\frac{2 S_{y}}{g}}$
$\mathrm{T}=\sqrt{\frac{2 \times 20}{10}}=2 \mathrm{sec}$
Range $=u_{x} t+\frac{1}{2} a_{x} \mathrm{t}^{2}$
Here $u_{x}=0, a_{x}=6 \mathrm{~m} / \mathrm{s}^{2}$ (due to wind)
$=0+\frac{1}{2} \times 6 \times(2)^{2}=12 \mathrm{~m}$
Q. 20 (B)

On the incline plane the maximum possible Range is -
$\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{~g}(1+\sin \theta)}$
Let $\theta=\beta$
And angle of projection from the inclined plane $=\alpha$

$u_{y}=u \sin \alpha u_{x}=\cos \alpha \quad a_{x}=-g \sin \beta a_{y}=-g$ $\cos \beta$
Range $=s_{x}=u_{x} T+\frac{1}{2} a_{x} T^{2}$
(on the inclined plane) where $\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}_{\mathrm{y}}}$
$\Rightarrow \mathrm{s}_{\mathrm{x}}=(\mathrm{u} \cos \alpha)$
$\left[\frac{2 \mathrm{u} \sin \alpha}{\mathrm{g} \cos \beta}\right]+\frac{1}{2}[-\mathrm{g} \sin \beta]\left[\frac{2 \mathrm{u} \sin \alpha}{2 \cos \beta}\right]^{2}$
$=\frac{2 \mathrm{u}^{2} \sin \alpha}{\mathrm{~g} \cos ^{2} \beta}[\cos \alpha \cos \beta-\sin \alpha \sin \beta]$
$\mathrm{s}_{\mathrm{x}}=\frac{2 \mathrm{u}^{2} \sin \alpha}{\mathrm{~g} \cos ^{2} \beta}[\cos (\alpha+\beta)]$
$=\frac{\mathrm{u}^{2}}{\mathrm{~g} \cos ^{2} \beta}[2 \sin \alpha \cos (\alpha+\beta)]$
$=\frac{\mathrm{u}^{2}}{\mathrm{~g} \cos ^{2} \beta}[\sin (2 \alpha+\beta)+\sin (-\beta)]$
$s_{x}=\frac{u^{2}}{g \cos ^{2} \beta}[\sin (2 \alpha+\beta)-\sin \beta]$

Now s_{x} is max s_{x}
when $\sin (2 \alpha+\beta)$ is $\max (\because \beta=$ constt. $)$
$\Rightarrow 2 \alpha+\beta=\frac{\pi}{2} \Rightarrow \alpha=\frac{\left(\frac{\pi}{2}-\beta\right)}{2}$
i.e., when ball is projected at the angle bisector of angle formed by inclined plane and dir. of net accelaration reversed.
$\&\left(s_{x}\right)_{\max }=\frac{u^{2}}{g \cos ^{2} \beta}[1-\sin \beta]=\frac{u^{2}(1-\sin \beta)}{g(1-\sin \beta)(1-\sin \beta)}$
Max. Range on an inclined plane $=\frac{u^{2}}{g(1+\sin \beta)}$

Here $\beta=\theta \Rightarrow R_{\max }=\frac{u^{2}}{g(1+\sin \theta)}$ Ans "B"
Q. 21 (D)
$R=\frac{v^{2}}{g \cos ^{2} \beta}[\sin (2 \alpha+\beta)-\sin \beta]$

Putting $\beta=45^{\circ} \& \alpha=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$

$\mathrm{R}=\frac{\mathrm{v}^{2}}{\mathrm{~g}\left(\frac{1}{\sqrt{2}}\right)^{2}}\left[\sin \left(2 \times \frac{3 \pi}{24}+\frac{\pi}{4}\right)-\sin \frac{\pi}{4}\right]$
$\mathrm{s}_{\mathrm{x}}=\frac{\mathrm{v}^{2} \times 2}{\mathrm{~g}}\left[-2 \times \frac{1}{\sqrt{2}}\right]=-2 \sqrt{2} \frac{\mathrm{v}^{2}}{\mathrm{~g}}$
(-ve sign indicates that the displacement is in -ve x direction)
\Rightarrow Range $=2 \sqrt{2} \frac{\mathrm{v}^{2}}{\mathrm{~g}}$
Ans "D"

Alternate II method

$\beta=-\frac{\pi}{4} \& \alpha=\frac{\pi}{4}$
$R=\frac{u^{2}}{g \cos ^{2} \beta}[\sin (2 \alpha+\beta)-\sin \beta]$
$=\frac{\mathrm{u}^{2}}{\mathrm{~g}\left(\frac{1}{\sqrt{2}}\right)^{2}}\left[\sin \frac{\pi}{4}-\sin \left(-\frac{\pi}{4}\right)\right]$
$\mathrm{R}=\frac{2 \sqrt{2} \mathrm{u}^{2}}{\mathrm{~g}}$ (along +ve x die.) $(+\mathrm{ve} \mathrm{x})$

III Method

$u_{x}=u \cos \beta, T=\left|\frac{2 u \sin \beta}{g \cos \beta}\right|, a_{x}=g \sin \beta ;$
$a_{y}=-\cos \beta$
$s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}=(u \cos \beta)$
$\left[\frac{2 \mathrm{u} \sin \beta}{\mathrm{g} \cos \beta}\right]+\frac{1}{2}(\mathrm{~g} \sin \beta)\left(\frac{2 \mathrm{u} \sin \beta}{\mathrm{g} \cos \beta}\right)^{2}$
Let $\alpha=\beta=45^{\circ}$
So, $\mathrm{s}_{\mathrm{x}}=\frac{\mathrm{u}^{2} 2}{\mathrm{~g}}\left(\frac{1}{\sqrt{2}}\right)+\frac{1}{2} \mathrm{~g}\left(\frac{1}{\sqrt{2}}\right) \frac{2 \cdot 2 \mathrm{u}^{2}}{\mathrm{~g}^{2}}=\frac{2}{\sqrt{2}} \frac{\mathrm{u}^{2}}{\mathrm{~g}}[1+1]$
$\mathrm{s}_{\mathrm{x}}=2 \sqrt{2} \frac{\mathrm{u}^{2}}{\mathrm{~g}}$
Ans "D"
Q. 22 (D)

Applying equation of motion perpendicular to the incline for $\mathrm{y}=0$.
$0=V \sin (\theta-\alpha) t+\frac{1}{2}(-g \cos \alpha) t^{2}$
$\Rightarrow \mathrm{t}=0 \& \frac{2 \mathrm{~V} \sin (\theta-\alpha)}{\mathrm{g} \cos \alpha}$

At the moment of striking the plane, as velocity is perpendicular to the inclined plane hence component of velocity along incline must be zero.

$$
\begin{aligned}
& 0=v \cos (\theta-\alpha)+(-g \sin \alpha) \cdot \frac{2 V \sin (\theta-\alpha)}{\mathrm{g} \cos \alpha} \\
& \mathrm{v} \cos (\theta-\alpha)=\tan \alpha .2 \mathrm{~V} \sin (\theta-\alpha) \\
& \cot (\theta-\alpha)=2 \tan \alpha \text { Ans. (D) }
\end{aligned}
$$

Q. 23 (C)
$a_{y}=-g / \sqrt{2} m / s^{2}$
$\mathrm{a}_{\mathrm{x}}=\mathrm{g} / \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
\mathrm{T} & =\frac{2 \mathrm{u} \sin \theta}{\mathrm{~g}_{\text {eff }}} \\
\mathrm{T} & =\frac{2 \times(10 / \sqrt{2})}{\mathrm{g} / \sqrt{2}} \\
& =2 \mathrm{sec}
\end{aligned}
$$

Q. 24 (C)
$\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g} \cos \theta}$
$\mathrm{T}=\frac{2 \times 5 \sqrt{3}}{10 \times \cos 30^{\circ}}$
$\mathrm{T}=2 \mathrm{sec}$

Q. 25
(C)

$a_{y}=-g \cos \theta$
$\mathrm{a}_{\mathrm{x}}=\mathrm{g} \sin \theta$
$\mathrm{u}_{\mathrm{v}}=\mathrm{v}$
$\mathrm{u}_{\mathrm{x}}=0$

Range $=\frac{1}{2} \mathrm{a}_{\mathrm{x}} \mathrm{T}^{2}$
$\mathrm{T}=\frac{2 . \mathrm{v}}{\mathrm{g} \cos \theta}=\frac{1}{2} \mathrm{~g} \sin \theta\left(\frac{2 \mathrm{v}}{\mathrm{g} \cos \theta}\right)^{2}$
$R=2 \frac{\mathrm{v}^{2}}{\mathrm{~g}} \tan \theta \sec \theta$
Q. 26 (D)

$R=u_{x} t+\frac{1}{2} a_{x} t^{2}$
$\left[\therefore \mathrm{u}_{\mathrm{x}}=0 . \mathrm{u}_{\mathrm{y}}=\mathrm{v}\right]$
$\Rightarrow \therefore \mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g} \cos \theta}=\frac{2 \mathrm{v}}{\mathrm{g} \cos \theta}$
$\mathrm{R}=\frac{1}{2} \mathrm{~g} \sin \theta \mathrm{~T}^{2}$
$\mathrm{R}=\frac{1}{2} \mathrm{~g} \sin \theta\left(\frac{2 \mathrm{~V}}{\mathrm{~g} \cos \theta}\right)^{2}$
$\mathrm{R}=\mathrm{Tv} \tan \theta$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (B,C)

\Rightarrow Time at which $\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{y}}$ is what we are solving V_{x} $=\mathrm{V}_{\mathrm{y}}$

$$
\text { Now, } V_{x}=u \cos \alpha
$$

$$
V_{y}=u \sin \alpha-g t
$$

$\Rightarrow \mathrm{u} \cos \alpha=\mathrm{u} \sin \alpha-\mathrm{gt}\left\{\because \mathrm{V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{x}}\right\} ; \mathrm{att}=\mathrm{t}_{1}$ (say)
$\Rightarrow \mathrm{t}_{1}=\frac{\mathrm{u}}{\mathrm{g}}(\sin \alpha-\cos \alpha){ }^{\prime \prime} \mathrm{C}^{\prime \prime}$ Ans
Also when $\mathrm{V}_{\mathrm{y}} \equiv \mathrm{V}_{\mathrm{x}}$
\{i.e., when we choose 'y' axis as $-y^{\prime}$ \} at $t=t_{2}$ (say) $-\mathrm{u} \cos \alpha=\mathrm{u} \sin \alpha-\mathrm{gt}_{2}$

$$
\Rightarrow \mathrm{t}_{2}=\frac{\mathrm{u}}{\mathrm{~g}}(\sin \alpha+\cos \alpha)^{\prime \prime} \mathbf{B}^{\prime \prime} \mathbf{A n s}
$$

Q. 2 (A, B)

$$
\begin{aligned}
& x=24=u \cos \theta \cdot t \\
& \Rightarrow \quad t=\frac{24}{24 \cos \theta}=\frac{1}{\cos \theta} \\
& \quad y=14=u \sin \theta t-\frac{1}{2} g^{2} t^{2} \\
& \Rightarrow \quad 14=\frac{u \sin \theta}{\cos \theta}-\frac{5}{\cos ^{2} \theta} \\
& \Rightarrow \quad 14=u \tan \theta-5 \sec ^{2} \theta \\
& \Rightarrow \quad 5 \tan ^{2} \theta-24 \tan \theta+19=0 \\
& \Rightarrow \tan \theta=1,19 / 5 . \text { Ans }
\end{aligned}
$$

Q. 3 (C)

$$
\begin{aligned}
& \mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} \\
& \sqrt{3}=\frac{20 \sin ^{2} \theta}{10} \Rightarrow \sin 2 \theta=\frac{\sqrt{3}}{2} \\
& \therefore \theta=30^{\circ}
\end{aligned}
$$

(A) $\mathrm{H}_{\max }=\frac{\mathrm{u}^{2} \sin 2 \theta}{2 \mathrm{~g}}=\frac{(\sqrt{20})^{2} \times \frac{1}{4}}{2 \times 10}=0.25 \mathrm{~m}$
(B) Minimum Velocity $u \cos \theta$
$=\sqrt{20} \times \cos 30^{\circ}$
$=\sqrt{20} \times \frac{\sqrt{3}}{2}=\sqrt{15} \mathrm{~m} / \mathrm{s}$
(C) $\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}$
$=\frac{2 \times \sqrt{20} \times \frac{1}{2}}{10}$

$$
\Rightarrow \quad \sqrt{\frac{1}{5}} \mathrm{sec}
$$

Q. 4 (A,B,C,D)

$\mathrm{h}=\frac{\mathrm{u}^{2}}{2 \mathrm{~g}} \Rightarrow \mathrm{u}=\sqrt{2 \mathrm{gh}}$
(a) $\mathrm{R}_{\text {max }}=\frac{\mathrm{u}^{2}}{\mathrm{~g}}=2 \mathrm{~h}$
(b) $\mathrm{R}=\mathrm{nH}_{\text {max }}$
$\frac{u^{2} \sin 2 \theta}{\mathrm{~g}}=\mathrm{n} \frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$
$4=n \tan \theta$
$\theta=\tan ^{-1}\left(\frac{4}{\mathrm{n}}\right)$
(c) $\mathrm{gT}^{2}=\mathrm{g} \times \frac{4 \mathrm{u}^{2} \sin ^{2} \theta}{\mathrm{~g}^{2}}=\frac{2 \times \mathrm{u}^{2} \sin 20}{\mathrm{~g}} \times \tan \theta$
$\mathrm{gT}^{2}=2 \mathrm{R} \tan \theta$
(d) $\mathrm{T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}, \mathrm{H}_{\max }=\frac{\mathrm{u}_{\mathrm{y}}{ }^{2}}{2 \mathrm{~g}}$
\therefore Ratio 1:1

Q. 5 (A,B)

Put the value of T, R, H, in the given equation and solve each option.
Q. 6 (A,C,D)
$\mathrm{T}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}} \Rightarrow 0.4=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$
$\Rightarrow \mathrm{H}=0.8 \mathrm{~m}$
$\mathrm{R}=0.4 \times 4=1.6 \mathrm{~m}$
and $\mathrm{Uy}=\sqrt{2 \mathrm{gH}}=\sqrt{2 \times 10 \times 0.8}=4 \mathrm{~m} / \mathrm{s} \Rightarrow \theta=45^{\circ}$

Comprehension-1 (Q. No 7 to 9)

Q. 7 (A)
Q. 8 (C)
Q. 9 (C)

Sol. $7 \quad H_{A}=H_{C}>H_{B}$
Obviously A just reaches its maximum height and C has crossed its maximum height which is equal to A as u and θ are same. But B is unable to reach its max. height.
Sol. 8 Time of flight of A is 4 seconds which is same as the time of flight if wall was not there.
Time taken by C to reach the inclined roof is 1 sec .

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{OR}}=4 \\
& \mathrm{~T}_{\mathrm{QR}}=1 \\
& \therefore \mathrm{~T}_{\mathrm{OQ}}=\mathrm{T}_{\mathrm{OR}}-\mathrm{T}_{\mathrm{QR}}=3 \text { seconds }
\end{aligned}
$$

Sol. 9 from above $=\frac{2 u \sin \theta}{\mathrm{~g}}=4$
$\therefore \mathrm{u} \sin \theta=20 \mathrm{~m} / \mathrm{s} \Rightarrow$ vertical component is $20 \mathrm{~m} / \mathrm{s}$. for maximum height

$$
\begin{aligned}
& \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \Rightarrow 0^{2}=20^{2}-2 \times 10 \times \mathrm{s} \\
& \mathrm{~s}=20 \mathrm{~m} .
\end{aligned}
$$

Comprehension-2 (Q. No 10 to 13)

Q. 10 (B)
Q. 11 (A)
Q. 12 (C)
Q. 13 (A)

Sol. Let us choose the x and y directions along OB and OA respectively. Then

$$
u_{x}=u=10 \sqrt{3} \mathrm{~m} / \mathrm{s}, \mathrm{u}_{\mathrm{y}}=0
$$

$a_{x}=-g \sin 60^{\circ}=-5 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$
and $\mathrm{a}_{\mathrm{y}}=-\mathrm{g} \cos 60^{\circ}=-5 \mathrm{~m} / \mathrm{s}^{2}$
Sol.10 At point Q, x-component of velocity is zero. Hence, substituting in

$$
\begin{aligned}
& v_{x}=u_{x}+a_{x} t \\
& 0=10 \sqrt{3}-5 \sqrt{3} t \\
& \text { or } \mathrm{t}=\frac{10 \sqrt{3}}{5 \sqrt{3}}=2 \mathrm{~s}
\end{aligned}
$$

Ans.
Sol. 11 At point $\mathrm{Q}, \mathrm{v}=\mathrm{v}_{\mathrm{y}}=\mathrm{u}_{\mathrm{y}}+\mathrm{a}_{\mathrm{y}} \mathrm{t}$
$\therefore \quad \mathrm{v}=0-(5)(2)=-10 \mathrm{~m} / \mathrm{s}$ Ans.
Here, negative sign implies that velocity of particle at Q is along negative y direction.
Sol. 12 Distance PO = |displacement of particle along ydirection |

Here, $s_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2}$
$=0-\frac{1}{2}(5)(2)^{2}=-10 \mathrm{~m}$
$\therefore \mathrm{PO}=10 \mathrm{~m}$
Therefore, $\mathrm{h}=\mathrm{PO} \sin 30^{\circ}=(10)\left(\frac{1}{2}\right)$
or $\quad h=5 \mathrm{~m}$ Ans.

Sol. 13 Distance $\mathrm{OQ}=$ displacement of particle along xdirection $=s_{x}$

Here $s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}$
$=(10 \sqrt{3})(2)-\frac{1}{2}(5 \sqrt{3})(2)^{2}=10 \sqrt{3} \mathrm{~m}$
or $\quad \mathrm{OQ}=10 \sqrt{3} \mathrm{~m}$
$\therefore \mathrm{PQ}=\sqrt{(\mathrm{PO})^{2}+(\mathrm{OQ})^{2}}=\sqrt{(10)^{2}+(10 \sqrt{3})^{2}}=$
$\sqrt{100+300}=\sqrt{400}$
$\therefore \quad \mathrm{PQ}=20 \mathrm{~m}$ Ans.
Comprehension-3 (Q. No 14 to 17)

Q. 14 (B)

Q. 15 (C)
Q. 16 (D)
Q. 17 (B)

Sol. $14 a_{A B}=0$
\therefore Straight line

Sol. 15 Given $V_{1} \cos \theta_{1}=v_{2} \cos \theta_{2} \Rightarrow v_{\mathrm{xA}}=\mathrm{V}_{\mathrm{xB}}$
$\overrightarrow{\mathrm{V}}_{\mathrm{A}}=\mathrm{V}_{\mathrm{XA}} \hat{\mathrm{i}}+\mathrm{V}_{\mathrm{yA}} \hat{\mathrm{j}} ; \overrightarrow{\mathrm{V}}_{\mathrm{B}}=\mathrm{V}_{\mathrm{XB}} \hat{\mathrm{i}}+\mathrm{V}_{\mathrm{yB}} \hat{\mathrm{j}}$
$\therefore \overrightarrow{\mathrm{v}}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{yA}} \hat{\mathrm{j}}-\mathrm{V}_{\mathrm{yB}} \hat{\mathrm{j}}$
Sol. $16 \mathrm{~T}=\frac{2 \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}$
\therefore Same
$\mathrm{H}=\frac{\mathrm{u}_{\mathrm{y}}{ }^{2}}{2 \mathrm{~g}}$
$\vec{V}_{A B}=V_{x A} \hat{i}-V_{x B} \hat{i}$

Sol. 17

$\mathrm{R}=\frac{2 \mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}}}{\mathrm{g}}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}$
when θ and $90-\theta$ range is same
$v_{21}=v_{2 x} \hat{i}-v_{2 y} \hat{j}-v_{1 x} \hat{i}-v_{1 y} \hat{j}$
$\tan \theta=\left(\frac{v_{2 y}-v_{1 y}}{v_{2 x}-v_{1 x}}\right) \mathrm{v}_{2 \mathrm{y}}<\mathrm{v}_{1 \mathrm{y}}$
$\tan \theta=-\mathrm{ve}$

NUMERICAL VALUE BASED

Q. 18 (A)r (B) s (C) q (D) p

Time of flight
$\mathrm{T}=\frac{2 \mathrm{u}}{\mathrm{g} \cos 45^{\circ}}=\frac{2 \mathrm{u}}{\mathrm{g} \cos 45^{\circ}}=\frac{2 \sqrt{2} \mathrm{u}}{\mathrm{g}} \quad \therefore \mathrm{D} \rightarrow \mathrm{p}$

Velocity of stone is parallel to x-axis at half the time of flight.
$\therefore \mathrm{A} \rightarrow \mathrm{r}$
At the instant stone make 45° angle with x -axis its velocity is horizontal.
\therefore The time is $=\frac{\mathrm{u} \sin 45^{\circ}}{\mathrm{g}}=\frac{\mathrm{u}}{\sqrt{2} \mathrm{~g}} \therefore \mathrm{~B} \rightarrow \mathrm{~s}$
The time till its displacement along x -axis is half the range is $\frac{1}{\sqrt{2}} \mathrm{~T}=\frac{2 \mathrm{u}}{\mathrm{g}} \therefore \mathrm{C} \rightarrow \mathrm{q}$
Q. 19 (A) r (B) s (C) q (D) p

Equation of path is given as

$$
y=a x-b x^{2}
$$

Comparing it with standard equation of projectile;

$$
\begin{aligned}
& y=x \tan \theta-\frac{g x^{2}}{2 u^{2} \cos ^{2} \theta} \\
& \tan \theta=a, \frac{g}{2 u^{2} \cos ^{2} \theta}=b
\end{aligned}
$$

Horizontal component of velocity $=u \cos \theta=\sqrt{\frac{g}{2 b}}$
Time of flight $\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}=\frac{2(\mathrm{u} \cos \theta) \tan \theta}{\mathrm{g}}$

$$
=\frac{2\left(\sqrt{\frac{g}{2 b}}\right) \mathrm{a}}{\mathrm{~g}}=\sqrt{\frac{2 \mathrm{a}^{2}}{\mathrm{bg}}}
$$

Maximum height $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}=\frac{[\mathrm{u} \cos \theta \cdot \tan \theta]^{2}}{2 \mathrm{~g}}$

$$
=\frac{\left[\sqrt{\frac{\mathrm{g}}{2 \mathrm{~b}}} \cdot\right]^{2}}{2 \mathrm{~g}}=\frac{\mathrm{a}^{2}}{4 \mathrm{~b}}
$$

Horizontal range $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{2 \mathrm{~g}}$
$\left.=\frac{2(u \sin \theta)(u \cos \theta)}{g}=\frac{2\left[\sqrt{\frac{g}{2 b}} \cdot \mathrm{a}\right.}{\mathrm{g}}\right]\left[\sqrt{\frac{\mathrm{g}}{2 \mathrm{~b}}}\right] . \mathrm{g}$
Q. $1 \quad[75 \mathrm{~m} / \mathrm{s}]$
$y=x \tan \theta-\frac{\mathrm{gx}^{2}}{2 \mathrm{u}^{2} \cos ^{2} \theta}$
$100=450 \tan 53^{\circ}-\frac{10(450)^{2}}{2 \mathrm{u}^{2} \cos ^{2} 53^{\circ}}$
$\mathrm{u}=75 \mathrm{~m} / \mathrm{s}$
Q. $2[5 \mathrm{~m} / \mathrm{s}]$

Time of flight $(\mathrm{T})=\frac{2 \mathrm{u} \sin 37^{\circ}}{\mathrm{g} \cos 37^{\circ}}$
Relative acceleration along incline is zero
\therefore Relative velocity along incline ucos 37° is constant
So, $\mathrm{T}=\frac{3}{\mathrm{u} \cos 37^{\circ}}=\frac{2 \mathrm{u} \sin 37^{\circ}}{\mathrm{g} \cos 37^{\circ}}$
On solving, we get
$u=5 \mathrm{~m} / \mathrm{s}$
Q. 3 [0020]

Path of particle A, w.r.t. B will projectile, they collide if $A B$ in equal to range

$$
\mathrm{AB}=\frac{2 \times 10 \times 10}{10}=20 \mathrm{~m}
$$

Q. 4 [0040]

$-\mathrm{h}=\mathrm{u} \sin \theta 2 \mathrm{~T}-\frac{1}{2} \mathrm{~g}(2 \mathrm{~T})^{2}$
$\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}} \quad \mathrm{u} \sin \theta=\frac{\mathrm{gT}}{2}$
$-\mathrm{h}=\frac{\mathrm{gT}}{2} \times 2 \mathrm{~T}-\frac{1}{2} \mathrm{~g}^{4} \mathrm{~T}^{2}$
$-\mathrm{h}=-\mathrm{gT}^{2}$
$\mathrm{h}=\mathrm{gT}^{2} \quad$ for $\mathrm{T}=2 \mathrm{sec}$.
$\mathrm{h}=10 \times 4 \quad=40 \mathrm{~m}$
[0005]
Minimum θ implies minimum V_{fy} and maximum V_{fx}. In order to have the aforementioned situation, the rock has to be launched horizontally.
$\mathrm{v}_{\mathrm{y}}=\sqrt{2 \mathrm{gh}}$

$\tan 30^{\circ}=\frac{\mathrm{v}_{\mathrm{y}}}{\mathrm{v}}=\frac{\sqrt{2 \times 10 \times \mathrm{h}}}{10 \sqrt{3}}, \mathrm{~h}=5 \mathrm{~m}$
Q. 6
[0002]
$\tan \phi=\frac{\mathrm{H}_{\text {max }}}{\frac{\text { Range }}{2}}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g} \times \frac{2 \mathrm{u}^{2} \sin \theta \times \cos \theta}{2 \mathrm{~g}}}$
$\tan \phi=\frac{\sin \theta}{2 \cos \theta}$

$\tan \phi=\frac{\tan \theta}{2}$
$\frac{\tan \theta}{\tan \phi}=2$
Q. 7 [0002]
$80=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}\left(\theta=45^{\circ}\right)$
$u=20 \sqrt{2}$
$\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}=\frac{2 \times 20 \sqrt{2}}{\mathrm{~g}} \times \frac{1}{\sqrt{2}}$
$\mathrm{T}=4$
$\mathrm{v}(\mathrm{T}-0.5)=7$
$\mathrm{v}=\frac{7}{3.5}$
$\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
Q. 8 [1440]

$2000=\frac{1}{2} \mathrm{gt}^{2} \quad \Rightarrow \mathrm{t}^{2}=\frac{4000}{10} \quad \Rightarrow \mathrm{t}=20 \mathrm{sec}$
$\therefore \mathrm{S}=(112-40)(20)=(72)(20)=1440 \mathrm{~m}$
Q. 9 [0008]
$x=y^{2}+2 y+2$
$\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dt}}+2 \frac{\mathrm{dy}}{\mathrm{dt}}$
$\mathrm{v}_{\mathrm{x}}=4 \mathrm{y}+4$
$\left.\mathrm{a}_{\mathrm{x}}=\frac{\mathrm{dv}_{\mathrm{x}}}{\mathrm{dt}}=4 \frac{\mathrm{dy}}{\mathrm{dt}}=4 \times 2=8 \mathrm{~m} / \mathrm{s}^{2}\right]$
Q. 10 [10m]
$\mathrm{R}_{1}-\mathrm{R}_{2}=\mathrm{u} \cos 45^{\circ}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)=5 \sqrt{2}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)$
$-\mathrm{y}=5 \sqrt{2} \mathrm{t}_{1}-5 \mathrm{t}_{1}{ }^{2}$
$-y=-5 \sqrt{2} t_{2}-5 t_{2}{ }^{2}$
$\Rightarrow \quad\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)=\sqrt{2}$
$\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)=10$

KVPY

PREVIOUS YEAR'S

Q. 1 (B)

as $\mathrm{V}_{\mathrm{y}}=\mathrm{U}_{\mathrm{y}}-\mathrm{gt}$
Q. 2 (A)

Heavier will retard less, it will have more range.
Q. 3 (D)

the trajectory of the falling apple as seen by the girl is an incline straight line pointing opposite to the direction of the moving train as relative initial velocity $=0$.
Q. 4 (D)

Time of fall $=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}=\sqrt{\frac{2 \times 45}{10}}$
$\mathrm{t}=3 \mathrm{sec}$
horizontal distance $=$ horizontal velocity \times time $12=v \times 3$
$\mathrm{v}=4 \mathrm{~m} / \mathrm{s}$
$=4 \times \frac{18}{5} \mathrm{~km} / \mathrm{hr}$
$\mathrm{v}=14.4 \mathrm{~km} / \mathrm{hr}$
$\mathrm{v} \approx 15 \mathrm{~km} / \mathrm{hr}$
Q. 5 (B)

Work done by gravity on A \& B is same.
\therefore Horizontal velocity of $A=$ horizontal velocity of B as they leave the horizontal portion of the structure.
$\therefore \mathrm{t}_{\mathrm{A}}=\mathrm{t}_{\mathrm{B}} \ldots \ldots$. (i)
Also vertical velocity of $A \&$ vertical velocity of C when released are both zero
\therefore They both will cover same vertical distance in same time.
$\therefore \mathrm{t}_{\mathrm{A}}=\mathrm{t}_{\mathrm{C}} \ldots$...(ii)
From(i) \& (ii)
$\mathrm{t}_{\mathrm{A}}=\mathrm{t}_{\mathrm{B}}=\mathrm{t}_{\mathrm{C}}$
Note : Correction in option option B should be $\mathrm{t}_{\mathrm{A}}=\mathrm{t}_{\mathrm{B}}=\mathrm{t}_{\mathrm{C}}$
Q. 6 (B)

For the same range, another projection angle will be $90^{\circ}-$ $30^{\circ}=60^{\circ}$
$\mathrm{h}=\frac{\mathrm{u}^{2} \sin ^{2} 30^{\circ}}{2 \mathrm{~g}}$
$h_{1}=\frac{u^{2} \sin ^{2} 60^{\circ}}{2 g}$
$\frac{\mathrm{h}_{1}}{\mathrm{~h}}=\frac{\sin ^{2} 60^{\circ}}{\sin ^{2} 30^{\circ}}=3 \Rightarrow \mathrm{~h}_{1}=3 \mathrm{~h}$

Q. 7 (B)

Velocity of projection $=24 \mathrm{~m} / \mathrm{s}$
Distance between point of projection and hoop
$=\sqrt{25^{2}+45^{2}}$
\therefore Time taken by ball to reach the hoop
$=\frac{\sqrt{25^{2}+45^{2}}}{24}$
(Note :- We are analysing the motion wrt hoop)
\therefore Distance by which hoop will fall
$=\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2} \times 10 \times \frac{\left(25^{2}+45^{2}\right)}{24^{2}}$
\therefore Height above the ground where apple go through the hoop is given by

$$
45-\left[\frac{1}{2} \times 10 \times \frac{\left(25^{2}+45^{2}\right)}{24^{2}}\right]=22 \mathrm{~m}
$$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (2)

$$
\text { For } y_{\operatorname{mex}} \Rightarrow \frac{d y}{d x}=\alpha-2 \beta x=0
$$

$$
x=\frac{\alpha}{2 \beta}
$$

$$
\mathrm{y}_{\max }=\mathrm{H}_{\max }=\alpha \times \frac{\alpha}{2 \beta}-\beta\left(\frac{\alpha}{2 \beta}\right)^{2}
$$

$$
=\frac{\alpha^{2}}{2 \beta}-\frac{\alpha^{2}}{4 \beta}=\left(\frac{\alpha^{2}}{4 \beta}\right)
$$

$$
=2 x=R=\frac{\alpha}{\beta}=\frac{2 u^{2} \sin \theta \cos \theta}{g}
$$

$$
\mathrm{H}=\frac{\alpha^{2}}{4 \beta}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}
$$

$$
\tan \theta=\alpha
$$

$$
\theta=\tan ^{-1}(\alpha)
$$

$$
\begin{align*}
& |\overrightarrow{\mathrm{u}}|=|\overrightarrow{\mathrm{v}}| \tag{1}\\
& \overrightarrow{\mathrm{u}}=\mathrm{u} \cos 45 \hat{\mathrm{i}}+\mathrm{u} \sin 45 \hat{\mathrm{j}} \tag{2}\\
& \overrightarrow{\mathrm{v}}=\mathrm{v} \cos 45 \hat{\mathrm{i}}-\mathrm{v} \sin 45 \hat{\mathrm{j}} \tag{3}\\
& |\overrightarrow{\Delta \mathrm{P}}|=|\mathrm{m}(\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}})| \tag{4}\\
& \Delta \mathrm{P}=2 \mathrm{mu} \sin 45^{\circ}
\end{align*}
$$

$$
\begin{aligned}
& =2 \times 5 \times 10^{-3} \times 5 \sqrt{2} \times \frac{1}{\sqrt{2}} \\
& =5010-3 \\
& =5 \times 10-2
\end{aligned}
$$

Q. 3 [1]
Q. $4 \quad$ [10]
Q. 5 (2)

Range $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}}$ and same for θ and $90-\theta$
So same for 42° and 48°
Maximum height $\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$
H is high for higher θ
So H for 48° is higher than H for 42° Option (2)
Q. 6 (3)
Q. 7 (3)

JEE-ADVANCED

PREVIOUS YEAR'S
Q. 1 [5]

For relative motion perpendicular to line of motion of A
$\mathrm{V}_{\mathrm{A}}=100 \sqrt{3}=\mathrm{V}_{\mathrm{B}} \operatorname{Cos} 30^{\circ}$
$\Rightarrow \mathrm{V}_{\mathrm{B}}=100 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}_{0}=\frac{50}{\mathrm{~V}_{\mathrm{B}} \sin 30^{\circ}}=\frac{500}{200 \times \frac{1}{2}}=5 \mathrm{sec}$
Q. $2 \quad$ [30.00]

$\mathrm{H}_{1}=\frac{\mathrm{u}^{2} \sin ^{2} 45}{2 \mathrm{~g}}=120$
$\Rightarrow \frac{\mathrm{u}^{2}}{4 \mathrm{~g}}=120$
when half of kinetic energy is lost $v=\frac{u}{\sqrt{2}}$
$\mathrm{H}_{2}=\frac{\left(\frac{\mathrm{u}}{\sqrt{2}}\right)^{2} \sin ^{2} 30}{2 \mathrm{~g}}=\frac{\mathrm{u}^{2}}{16 \mathrm{~g}}$
from(i) \& (ii)
$\mathrm{H}_{2}=\frac{\mathrm{H}_{1}}{4}=30 \mathrm{~m}$ on 30.00
Q. $3 \quad$ [4.00]

Average velocity $=\frac{\text { Total displacement }}{\text { Total time }}$
Total time taken $=t_{1}+t_{2}+t_{3}+$ \qquad
$=\mathrm{t}_{1}+\frac{\mathrm{t}_{1}}{\alpha}+\frac{\mathrm{t}_{1}}{\alpha^{2}}+$ \qquad

Total time $=\frac{\mathrm{t}_{1}}{1-\frac{1}{\alpha}}$
Total displacement $=v_{1} t_{1}+v_{2} t_{2}+$ \qquad ...l
$=v_{1} t_{1}+\frac{v_{1}}{\alpha} \cdot \frac{t_{1}}{\alpha}+$ \qquad
$=\frac{\mathrm{v}_{1} \mathrm{t}_{1}}{1-\frac{1}{\alpha^{2}}}$
On solving
$\langle\mathrm{v}\rangle=\frac{\mathrm{v}_{1} \alpha}{\alpha+1}=0.8 \mathrm{v}_{1}$
$\alpha=4.00$

Newton's Laws of Motion and Friction

EXERCISES

Elementary

Q. 1 (3)
Q. 2 (3)
Q. 3 (2)
$\mathrm{m}=100 \mathrm{~m} / \mathrm{s}, v=0, \mathrm{~s}=0.06 \mathrm{~m}$
Retardation $=\alpha=\frac{\mathrm{u}^{2}}{2 \mathrm{~s}}=\frac{(100)^{2}}{2 \times 0.06}=\frac{1 \times 10^{6}}{12}$
$\therefore \quad$ Force $=\mathrm{ma}=\frac{5 \times 10^{-3} \times 1 \times 10^{6}}{12}=\frac{5000}{12}=417 \mathrm{~N}$
Q. 4 (3)

Acceleration $\alpha=\frac{F}{m}=\frac{100}{5}=20 \mathrm{~cm} / \mathrm{s}^{2}$
Now $v=\alpha \mathrm{t}=20 \times 10=200 \mathrm{~cm} / \mathrm{s}$
Q. 9
Q. 10

Tension between m_{2} and m_{3} is given by
Thrust $\mathrm{F}=\mathrm{u}\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right)=5 \times 10^{4} \times 40=1 \times 10^{6} \mathrm{~N}$
Q. 6 (1)
$\mathrm{F}=\mathrm{m}\left(\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}\right)=\frac{5(65-15) \times 10^{-2}}{0.2}=12.5 \mathrm{~N}$.
Q. 7 (3)

By drawing the free body diagram of point B

Let the tension in the section BC and BF are T_{1} and T_{2} respectively.
From Lami's theorem

$$
\begin{aligned}
& \frac{\mathrm{T}_{1}}{\sin 120^{\circ}}=\frac{\mathrm{T}_{2}}{\sin 120^{\circ}}=\frac{\mathrm{T}}{\sin 120^{\circ}} \\
& \Rightarrow \mathrm{T}=\mathrm{T}_{1}=\mathrm{T}_{2}=10 \mathrm{~N} .
\end{aligned}
$$

Q. 8 (1)

FBD of mass 2 kg FBD of mass 4 kg
Q. 13 (3)
$\mathrm{T} \sin 30=2 \mathrm{~kg} \mathrm{wt}$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}=4 \mathrm{~kg} \mathrm{wt} \\
& \mathrm{~T}_{1}=\mathrm{T} \cos 30^{\circ} \\
&=4 \cos 30^{\circ} \\
&= 2 \sqrt{3} .
\end{aligned}
$$

Q. 14 (3)

If monkey move downward with acceleration a then its apparent weight decreases. In that condition Tension in string $=m(g-a)$
This should not be exceed over breaking strength of the rope i.e. $360 \geq \mathrm{m}(\mathrm{g}-\mathrm{a}) \Rightarrow 360 \geq 60(10-\mathrm{a})$
$\Rightarrow \mathrm{a} \geq 4 \mathrm{~m} / \mathrm{s}^{2}$.

Q. 15 (3)

As the spring balances are massless therefore the reading of both balance should be equal.
Q. 16 (2)
Q. 17 (4)

In stationary lift man weighs 40 kg i.e. 400 N .
When lift accelerates upward it's apparent weight $=$ $m(g+a)=40(10+2)=480$ Ni.e. 48 kg
For the clarity of concepts in this problem kg-wt can be used in place of kg .
Q. 18 (4)

As the apparent weight increase therefore we can say that acceleration of the lift is in upward direction.
$\mathrm{R}=\mathrm{m}(\mathrm{g}+\mathrm{a}) \Rightarrow 4.8 \mathrm{~g}=4(\mathrm{~g}+\mathrm{a})$
$\Rightarrow \mathrm{a}=0.2 \mathrm{~g}=1.96 \mathrm{~m} / \mathrm{s}^{2}$
Q. 19 (2)

Rate of flow will be more when lift will move in upward direction with some acceleration because the net downward pull will be more and vice-versa.

$$
\mathrm{F}_{\text {upward }}=\mathrm{m}(\mathrm{~g}+\mathrm{a}) \text { and } \mathrm{F}_{\text {downward }}=\mathrm{m}(\mathrm{~g}-\mathrm{a}) \mathrm{F}_{\text {upward }}
$$

Q. 20 (1)

When car moves towards right with acceleration a then due to pseudo force the plumb line will tilt in backward direction making an angle θ with vertical.

From the figure,
$\tan \theta=\mathrm{a} / \mathrm{g} \quad \therefore \theta=\tan ^{-1}(\mathrm{a} / \mathrm{g})$.
Q. 21 (3)
Q. 22 (4)
$\mu=\frac{\mathrm{F}}{\mathrm{R}}=\frac{\mathrm{F}}{\mathrm{mg}}=\frac{98}{100 \times 9.8}=\frac{1}{10}=0.1$
Q. 23 (3)
$\mathrm{F}_{1}=\mu_{\mathrm{s}} \mathrm{R}=0.4 \times \mathrm{mg}=0.4 \times 10=4 \mathrm{~N}$ i.e. minimum 4 N force is required to start the motion of a body. But applied force is only 3 N . So the block will not move.
Q. 24 (1)

$$
\begin{equation*}
\mu=\frac{\mathrm{m}_{\mathrm{B}}}{\mathrm{~m}_{\mathrm{A}}} \Rightarrow 0.2=\frac{\mathrm{m}_{\mathrm{B}}}{10} \Rightarrow \mathrm{~m}_{\mathrm{B}}=2 \mathrm{~kg} \tag{Q. 25}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{F}=\mathrm{f}_{\mathrm{AB}}+\mathrm{F}_{\mathrm{BG}} \\
& =\mu_{\mathrm{AB}} \mathrm{~m}_{\mathrm{A}} \mathrm{~g}+\mu_{\mathrm{BG}}\left(\mathrm{~m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right) \mathrm{g} \\
& =0.2 \times 100 \times 10+0.3(300) \times 10 \\
& =200+900=1100 \mathrm{~N} \tag{4}
\end{align*}
$$

Q. 27 (1)

$\mathrm{f}=\mu \mathrm{R}$
$\mathrm{F} \cos 60^{\circ}=\mu\left(\mathrm{W}+\mathrm{F} \sin 60^{\circ}\right)$
Substituting $\mu=\frac{1}{2 \sqrt{3}} \& W=10 \sqrt{3}$ we get $F=20 \mathrm{~N}$
Q. 28 (1)

Retarding force $\mathrm{F}=\mathrm{ma}=\mu \mathrm{R}=\mu \mathrm{mg} \therefore \alpha=\mu \mathrm{g}$
Now from equation of motion $v^{2}=u^{2}-2 \alpha \mathrm{~s}$

$$
\Rightarrow 0=\mathrm{u}^{2}-2 \mathrm{as} \Rightarrow \mathrm{~s}=\frac{\mathrm{u}^{2}}{2 \mathrm{a}}=\frac{\mathrm{u}^{2}}{2 \mu \mathrm{~g}} .
$$

Q. 29 (4)
Q. 30 (1)

Kinetic friction $=\mu_{k} \mathrm{R}=0.2\left(\mathrm{mg}-\mathrm{F} \sin 30^{\circ}\right)$

$$
=0.2\left(5 \times 10-40 \times \frac{1}{2}\right)=0.2(50-20)=6 \mathrm{~N}
$$

Acceleration of the block
$=\frac{\mathrm{F} \cos 30^{\circ}-\text { Kinetic friction }}{\text { Mass }}$
$=\frac{40 \times \frac{\sqrt{3}}{2}-6}{5}=5.73 \mathrm{~m} / \mathrm{s}^{2}$.

Q. 31 (2)

Q. 32 (3)
$\mathrm{a}=\mathrm{g}(\sin \theta-\mu \cos \theta)=10\left(\sin 60^{\circ}-0.25 \cos 60^{\circ}\right)$ $\mathrm{a}=7.4 \mathrm{~m} / \mathrm{s}^{2}$.
Q. 33 (1)

Limiting friction between block and slab $=\mu_{\mathrm{S}} \mathrm{m}_{\mathrm{A}} \mathrm{g}$
$=0.6 \times 10 \times 9.8=58.8 \mathrm{~N}$
But applied force on block A is 100 N . So the block will slip over a slab.

Now kinetic friction works between block and slab $\mathrm{FK}=\mu_{\mathrm{k}} \mathrm{m}_{\mathrm{A}} \mathrm{g}=0.4 \times 10 \times 9.8=39.2 \mathrm{~N}$
This kinetic friction helps to move the slab
\therefore Acceleration of slab $=\frac{39.2}{\mathrm{~m}_{\mathrm{B}}}=\frac{39.2}{40}=0.98 \mathrm{~m} / \mathrm{s}^{2}$.

JEE-MAIN

OBJECTIVE QUESTIONS

$$
\begin{equation*}
\text { Q. } 1 \tag{2}
\end{equation*}
$$

Q. 3

Q. 6

$\mathrm{N}=2 \mathrm{ma}_{2}[$ Newtons II law for block A]
$\mathrm{F}-\mathrm{N}=\mathrm{m}_{2} \mathrm{a}$ [Newtons II law for block B]
$\Rightarrow \mathrm{N}=2 \mathrm{~F} / 3$ so the ratio is $1: 2$
(3)

Both blocks are constrained to move with same acceleration.
$6-\mathrm{N}=2 \mathrm{a}$ [Newtons II law for 2 kg block]
$\mathrm{N}-3=1 \mathrm{a}$ [Newtons II law for 1 kg block]
$\Rightarrow \mathrm{N}=4$ Newton
(2)

Action and Reaction are equal and opposite
(3)

Force exerted by string is always along the string and of pull type.
When there is a contact between a point and a surface the normal reaction is perpendicular to the surface and of push type.
(2)
$\mathrm{F}-\mathrm{N}=2$ ma, [Newton`s II law for block A] \(N=m a_{1}[\) Newton`s II law for block $B] \Rightarrow N=\frac{F}{3}$

$$
1-2020
$$

(3)

(2)

$\mathrm{F}-\mathrm{N}=\mathrm{Ma}$ [Newtons law for block of mass M]
$\mathrm{N}-\mathrm{N}^{\prime}=$ ma [Newtons law for block of mass m]
$N^{\prime}=M^{\prime}$ [[Newtons law for block of mass M']
$\Rightarrow N^{\prime}=M^{\prime} \frac{F}{M+m+M^{\prime}}$
$N=\left(m+M^{\prime}\right) \frac{F}{M+m+M^{\prime}} \Rightarrow N>N^{\prime}$
Q. 7 (4)
$\overrightarrow{\mathrm{F}}=\mathrm{ma}$
$\overrightarrow{\mathrm{a}}=\frac{\mathrm{d} \overrightarrow{\mathrm{v}}}{\mathrm{dt}}$
Q. 8 (1)
$\overrightarrow{\mathrm{F}}=\mathrm{ma}$
Q. 9 (3)
$\overrightarrow{\mathrm{F}}=\mathrm{ma}$
Q. 10 (2)

In free fall gravitation force acts.
Q. 11 (2)

Point A is mass less so net force on it most be zero otherwise it will have ∞ acceleration.
$\Rightarrow \mathrm{F}-\mathrm{T} \sin \theta=0 \quad$ [Equilibrium of A in horizontal direction]

$$
\Rightarrow \mathrm{T}=\frac{\mathrm{F}}{\sin \theta}
$$

Q. 12 (4)

$\mathrm{T} \cos \theta+\mathrm{T} \cos \theta-150=0$ [Equilibrium of point A]
$2 \mathrm{~T} \cos \theta=150$
$\mathrm{T}=\frac{75}{\cos \theta}$
When string become straight θ becomes 90° $\Rightarrow \mathrm{T}=\infty$

$10-\mathrm{T}_{2}=1 \mathrm{a}$ [Newton's II law for A]
$\mathrm{T}_{2}+30-\mathrm{T}_{1}=3 \mathrm{a}$ [Newton's II law for B]
$\mathrm{T}_{1}-30=3 \mathrm{a}$ [Newton's II law for C]
$\Rightarrow \quad \mathrm{a}=\frac{\mathrm{g}}{7}$
$\Rightarrow \quad \mathrm{T}_{2}=\frac{6 \mathrm{~g}}{7}$

Q. 14 (2)

From horizontal equilibrium
$\frac{\mathrm{T}_{2}}{2}=\frac{\mathrm{T}_{1} \sqrt{3}}{2}$

$\mathrm{T}_{2}=\sqrt{3} \mathrm{~T}_{1}$
From vertical equilibrium

$$
\begin{aligned}
& \frac{\mathrm{T}_{2} \sqrt{3}}{2}+\frac{\mathrm{T}_{1}}{2}=50 \\
& \Rightarrow \quad \mathrm{~T}_{1}=25 \mathrm{~N}, \mathrm{~T}_{2}=25 \sqrt{3} \mathrm{~N}
\end{aligned}
$$

Q. 15 (2)

Component of force
in y direction is
$\mathrm{N}_{\mathrm{A}} \sin 60^{\circ}=500$
$\mathrm{N}_{\mathrm{A}}=\frac{1000}{\sqrt{3}}$

Component of force
in x direction is
$\mathrm{N}_{\mathrm{A}} \cos 60^{\circ}=\mathrm{N}_{\mathrm{B}}$
$\Rightarrow \mathrm{N}_{\mathrm{B}}=\frac{500}{\sqrt{3}}$

Q. 16 (3)

Take a system $\left(m_{1}+m_{2}+m_{3}\right)$
$\mathrm{T}_{3}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}\right) \mathrm{a}$
$60=60 \mathrm{a}$
$\mathrm{a}=\frac{60}{60}=1 \mathrm{~m} / \mathrm{s}^{2}$
For body m_{3}
$\mathrm{T}_{3}-\mathrm{T}_{2}=\mathrm{m}_{3} \mathrm{a}$
$60-\mathrm{T}_{2}=30$
$\mathrm{T}_{2}=30 \mathrm{~N}$
Q. 17 (2)
$\mathrm{T}=\mathrm{mg}$
$2 \mathrm{~T} \cos \theta=\mathrm{Mg}$
From equation (i) and (ii)
$\Rightarrow 2 \mathrm{mg} \cos \theta=\mathrm{Mg}$
θ always >0 so $\mathrm{M}<2 \mathrm{~m}$

(A) $2 \mathrm{~T}=\mathrm{W}, \mathrm{T}=\mathrm{W} / 2$
(B) $\mathrm{W}=2 \mathrm{~T} \cos \theta$
$\mathrm{T}=\frac{\mathrm{W}}{2 \cos \theta}$
In (C) option θ is greater so $\sec \theta \uparrow, \mathrm{T} \uparrow$
If tension is more then string may be break-
Q. 19 (1)

Relative acceleration Man and car is zero during the journey
$\mathrm{N}=0$
Q. 20 (1)

At $\mathrm{t}=2 \mathrm{sec} \Rightarrow \mathrm{a}=\frac{10}{2}=5 \mathrm{~m} / \mathrm{s}^{2}$

So, $F=m a=\frac{50}{1000} \times 5=0.25 \mathrm{~N}$
At $\mathrm{t}=4 \mathrm{sec}$
$\mathrm{a}=0 \mathrm{So} \mathrm{F}=0$
$\Rightarrow \mathrm{At}=6 \mathrm{sec}$,
$\Rightarrow \mathrm{a}=-5 \mathrm{~m} / \mathrm{s}^{2} \Rightarrow \mathrm{~F}=-0.25 \mathrm{~N}$

Q. 21 (3)

$\mathrm{M}_{2} \mathrm{~g} \sin \alpha-\mathrm{T}=\mathrm{M}_{2} \mathrm{a}$
[Newton's II law for M_{2}]
$\mathrm{T}-\mathrm{M}_{1} \mathrm{~g} \sin \beta=\quad \mathrm{Ma}_{1}$ [[Newton's II law for M_{1}]
By adding both equations
$a=\left[\frac{M_{2} \sin \alpha-M_{1} \sin \beta}{M_{1}+M_{2}}\right] g$
Q. 22 (3)
Q. 18 (3)

$\mathrm{T}_{1}-\mathrm{mg}=\mathrm{ma}_{1}$ [Newton's II law for m]
$2 \mathrm{mg}-\mathrm{T}_{1}=2 \mathrm{ma}_{1}$ [Newton's II law for 2 m]
$\Rightarrow \quad \mathrm{a}_{1}=\frac{\mathrm{g}}{3}$
Case 2

$$
\begin{align*}
& \mathrm{F}-\mathrm{mg}=\mathrm{ma}_{2}[\text { Newton's II law for } \mathrm{m}] \\
\Rightarrow & 2 \mathrm{mg}-\mathrm{mg}=\mathrm{ma}_{2} \quad \Rightarrow \mathrm{a}_{2}=\mathrm{g} \Rightarrow \mathrm{a}_{2}>\mathrm{a}_{1} \tag{3}
\end{align*}
$$

Q. 23

$$
\begin{aligned}
& \mathrm{F}=\mathrm{m}_{1} 4\left[\text { Newton's II law for } \mathrm{m}_{1}\right] \\
& \mathrm{F}=\mathrm{m}_{2} 6\left[\text { Newton's II law for } \mathrm{m}_{2}\right] \\
& \mathrm{F}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a}\left[\text { Newton's II law for }\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)\right] \\
& \Rightarrow \mathrm{F}=\left[\frac{\mathrm{F}}{4}+\frac{\mathrm{F}}{6}\right] \mathrm{a} \Rightarrow 1=\left[\frac{1}{4}+\frac{1}{6}\right] \mathrm{a} \Rightarrow \mathrm{a}=2.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Due to symmetry we can say net force on body M is O.
\therefore acceleration is O .
Q. 25 (3)
$\mathrm{mg}-\frac{3}{4} \mathrm{mg}=\mathrm{ma} \quad$ [Newton's II law for man]
$\Rightarrow \quad \mathrm{a}=\frac{\mathrm{g}}{4}$
Q. 26 (2)

Acceleration $=\frac{F}{3 m}$
contact force $\mathrm{N}_{1}=\frac{\mathrm{mF}}{3 \mathrm{~m}}=\frac{\mathrm{F}}{3}$

$$
\mathrm{N}_{2}=\frac{2 \mathrm{mF}}{3 \mathrm{~m}}=\frac{2}{3} \mathrm{~F} \Rightarrow \therefore \mathrm{~N}_{1}: \mathrm{N}_{2}=1: 2
$$

Q. 27 (2)

$$
\begin{equation*}
120-100=5 a \tag{i}
\end{equation*}
$$

$\mathrm{a}=\frac{20}{5} \Rightarrow \mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}+25-100=2.5 \times 4$
$\mathrm{T}=85 \mathrm{~N}$
Q. 28 (3)

$$
\begin{align*}
& \mathrm{T}-\mathrm{mg}=\mathrm{ma} \tag{1}\\
& \mathrm{Mg}-\mathrm{T}=\mathrm{Ma} \tag{2}
\end{align*}
$$

from (1) and (2)

$$
a=\left(\frac{M-m}{M+m}\right) g
$$

Put $\mathrm{M} \gg \mathrm{m}$

$$
\Rightarrow \mathrm{a}=\mathrm{g}
$$

$$
\therefore \mathrm{T}=2 \mathrm{mg},
$$

$$
2 \mathrm{~T}=4 \mathrm{mg}
$$

Q. 29 (2)

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=6 \hat{\mathrm{i}}-8 \hat{j}+10 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{~F}}=\mathrm{m} \overrightarrow{\mathrm{a}}
\end{aligned}
$$

шшшитшт

$$
\begin{aligned}
& |\overrightarrow{\mathrm{F}}|=\mathrm{m}|\overrightarrow{\mathrm{a}}| \\
& \sqrt{6^{2}+8^{2}+10^{2}}=\mathrm{m} 1 \quad \mathrm{~m}=10 \sqrt{2} \mathrm{~kg} .
\end{aligned}
$$

Q. 30 (4)

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 \text { as }=1^{2}+2 \frac{\mathrm{~F}}{\mathrm{~m}} \mathrm{x} \\
& \mathrm{x}=\frac{-\mathrm{m}}{2 \mathrm{~F}} v^{2}=v_{0}^{2}+2 \text { as } \\
& \mathrm{O}^{2}=3^{2}+\frac{2 \mathrm{~F}^{1}}{\mathrm{~m}} \times 0=9+\frac{2 \mathrm{~F}^{1}}{\mathrm{~m}}\left(\frac{-\mathrm{m}}{2 \mathrm{~F}}\right) \\
& \Rightarrow \mathrm{F}^{1}=9 \mathrm{~F}
\end{aligned}
$$

Q. 31
 (3)

$\mathrm{Mg} \sin \theta-\mathrm{T}=\mathrm{Ma}$ [Newton's II law for block 1] $\mathrm{T}=\mathrm{Ma}$
[Newton's II law for block 2]
By dividing both equations
$2 \mathrm{~T}=\mathrm{Mg} \sin \theta \mathrm{T}=\frac{\mathrm{Mg} \sin \theta}{2}$
Q. 32 (3)

$\mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{1} \mathrm{a}$
$\mathrm{m}_{2} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}$
On solving equation (i) and (ii)
$\mathrm{a}=\left(\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) \mathrm{g}$
Q. 33 (1)

$\mathrm{T}_{1}-\mathrm{T}_{2}-\mathrm{m}_{\mathrm{A}} \mathrm{g}=\mathrm{m}_{\mathrm{A}} \mathrm{a}$
$\mathrm{T}_{2}-\mathrm{m}_{\mathrm{B}} \mathrm{g}=\mathrm{m}_{\mathrm{B}} \mathrm{a}$
$\mathrm{T}_{1}-\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right) \mathrm{g}=\left(\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)$
$\mathrm{T}_{2}=\mathrm{m}_{\mathrm{B}}(\mathrm{a}+\mathrm{g})$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}}{\mathrm{m}_{\mathrm{B}}}$
Q. 34 (2)
Q. $35 \begin{aligned} & \text { (4) } \\ & \\ & \\ & \mathrm{T}_{\max }=\mathrm{m}_{\max } \mathrm{g}=25 \times 10=250\end{aligned}$

$250-200=20 \mathrm{a}_{\max }$ $\mathrm{a}_{\text {max }}=2.5 \mathrm{~m} / \mathrm{s}^{2}$
Q. 36 (1)
$\theta=\downarrow \Rightarrow \sin \theta \downarrow$ $m g \sin \theta \downarrow$
Q. 37 (3)

$\uparrow \mathrm{a}=2.2 \mathrm{~m} / \mathrm{s}^{2}$
$\uparrow \mathrm{a}=2.2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}_{2}-8 \mathrm{~g}=8 \mathrm{a}$ [Newton's II law for 8 kg block]
$\Rightarrow \mathrm{T}_{2}=8 \times 2.2+8 \times 9.8=96 \mathrm{~N}$
$\mathrm{T}_{1}-12 \mathrm{~g}-\mathrm{T}_{2}=12 \mathrm{a}$
$\Rightarrow \mathrm{T}_{1}=12 \times 2.2+12 \times 9.8+96$
$\mathrm{T}_{1}=240 \mathrm{~N}$
Q. 38 (1)
$-\mathrm{v}_{\mathrm{A}}-\mathrm{v}_{\mathrm{A}}-\mathrm{v}_{\mathrm{A}}+\mathrm{v}_{\mathrm{B}}=0$
From constrained
$-5-5-5+\mathrm{v}_{\mathrm{B}}=0$
$\mathrm{v}_{\mathrm{B}}=15 \mathrm{~m} / \mathrm{s} \downarrow$
Q. 39 (1)

From constrained
$+2-\mathrm{v}_{\mathrm{B}}-\mathrm{v}_{\mathrm{B}}+1=0$
$\mathrm{v}_{\mathrm{B}}=3 / 2 \mathrm{~m} / \mathrm{s} \uparrow$
Q. 40
(2)
$v_{p_{1}}=\frac{-6+6}{2}=0$

$\Rightarrow\left|v_{p_{1}}\right|=\left|v_{p_{2}}\right|=0$
$\mathrm{v}_{\mathrm{D}}=-\mathrm{v}_{\mathrm{C}}$
$\therefore \quad$ velocity of C is

$$
=4 \mathrm{~m} / \mathrm{s}
$$

Q. 41 (1)

Here Resultant vel. of block ' B ' is v
So component of resultant in the direction of v ' is $\mathrm{v} \cos 37^{\circ}=\mathrm{v}^{\prime}, \quad \mathrm{v} \cos 37^{\circ}=20$

$$
\begin{equation*}
\mathrm{v}=\frac{20 \times 5}{4}=25 \mathrm{~m} / \mathrm{s} \tag{4}
\end{equation*}
$$

From constrained
The resultant vel. of the Block M is v in vertical direction.
So component of ' v ' is direction of u is
$\mathrm{v} \cos \theta=u \Rightarrow \mathrm{v}=\frac{\mathrm{u}}{\cos \theta}$
Q. 43 (3)

From constrained Motion - (along the rod vel of each particle is same so component of the velocity in the direction of rod is)
$\mathrm{v} \cos \theta=\mathrm{u} \sin \theta$
$\mathrm{v}=\mathrm{u} \tan \theta$
Q. 44

The length of string AB is constant.
\Rightarrow speed A and B along the string are same $u \sin \theta=$ V
$\mathrm{u} \sin \theta=\mathrm{V} u=\frac{\mathrm{V}}{\sin \theta}$
Q. 45 (3)
$\mathrm{A}=\frac{\mathrm{a}_{1}-\mathrm{a}_{2}}{2}$

Q. 46 (2)

$$
\begin{aligned}
& \ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}=\mathrm{C} \\
& \frac{\mathrm{~d} \ell_{1}}{\mathrm{dt}}+\frac{\mathrm{d} \ell_{2}}{\mathrm{dt}}+\frac{\mathrm{d} \ell_{3}}{\mathrm{dt}}+\frac{\mathrm{d} \ell_{4}}{\mathrm{dt}}=0
\end{aligned}
$$

$$
\begin{aligned}
& -v-v+0+v+2=0 \\
& v=2 m / s
\end{aligned}
$$

Q. 47 (2)

Let $\mathrm{AB}=\ell, \mathrm{B}=(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& \vec{v}_{B}=v_{x} \hat{i}+v_{y} \hat{j} \\
& \vec{v}_{B}=\sqrt{3} \hat{i}+v_{y} \hat{j} \rightarrow(i) \\
& x^{2}+y^{2}=\ell^{2} \\
& 2 x v_{x}+2 y v_{y}=0 \\
& \Rightarrow \sqrt{3}+\frac{y}{x} v_{y}=0 \\
& \Rightarrow \sqrt{3}+\left(\tan 60^{0}\right) v_{y}=0 \\
& \Rightarrow v_{y}=-1
\end{aligned}
$$

Hence from (i)

$$
\vec{v}_{B}=\sqrt{3} \hat{i}-\hat{j}
$$

Hence

$$
\mathrm{v}_{\mathrm{B}}=2 \mathrm{~m} / \mathrm{s}
$$

Q. 48 (3)

$\ell_{2}, \ell_{3}, \ell_{4}, \ell_{6}$ are remain constant. $\ell_{1}+\ell_{5}=$ constant so, ℓ_{7} will also be constant, so, only velocity of B is along horizontal $=2 \mathrm{~m} / \mathrm{s}$

Q. 49 (4)

$\mathrm{V}=($ velcoity of B w.r.t ground $)$
$\frac{\mathrm{V}-4}{2}=2 \mathrm{~V}=8 \mathrm{~m} / \mathrm{s}$ (velcoity of B w.r.t ground)
$\mathrm{V}^{\prime}=6 \mathrm{~m} / \mathrm{s}$ (velcoity of B w.r.t lift)
Q. 50 (1)

$\mathrm{F}=\mathrm{m}_{1} \mathrm{a}_{1} \quad$ [Newton's II law for m_{1}]
$180=20 a_{1}$
$\Rightarrow \mathrm{a}_{1}=9 \mathrm{~m} / \mathrm{s}^{2}$
Net force on m_{2} is 0 therefore acceleration of m_{2} is 0 .

Q. 51 (3)

$$
\begin{align*}
& 2 \mathrm{~T}=\mathrm{m}_{1} \mathrm{~g} \tag{1}\\
& \mathrm{~m}_{2} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a} \tag{2}\\
& \mathrm{~T}-\mathrm{m}_{3} \mathrm{~g}=\mathrm{m}_{3} \mathrm{a} \tag{3}
\end{align*}
$$

on solving $\frac{4}{\mathrm{~m}_{1}}=\frac{1}{\mathrm{~m}_{2}}+\frac{1}{\mathrm{~m}_{3}}$
Q. 52 (2)

18 kg at rest $=>180=2 \mathrm{~F}$
$\mathrm{F}=90 \mathrm{~N}$
Q. 53 (3)

(a) $\begin{aligned} \mathrm{T} & =\mathrm{mg}+\mathrm{ma} \\ \mathrm{T} & =\mathrm{mg}\end{aligned}$
(2) $\mathrm{T}=\mathrm{mg}-\mathrm{ma}$

Q. 54 (1)

$$
\begin{aligned}
& \mathrm{T}-\mathrm{mg}=0 \text { [Equilibrium of block] } \\
& \mathrm{T}-10=0 \\
& \mathrm{~T}=10
\end{aligned}
$$

Reading of spring balance is same as tension is spring balance.

Q. 55 (4)

$\mathrm{F}-\mathrm{kx}=\mathrm{m}_{1} \mathrm{a}_{1}$ [Newton's II law for M_{1}]
$\mathrm{kx}=\mathrm{m}_{2} \mathrm{a}_{2}$ [Newton's II law for M_{2}]
By adding both equations.
$\mathrm{F}=\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2} \Rightarrow \mathrm{a}_{2}=\frac{\mathrm{F}-\mathrm{m}_{1} \mathrm{a}_{1}}{\mathrm{~m}_{2}}$
Q. 56 (3)

Reading of spring balance is same as tension in the balance.
$\Rightarrow \mathrm{T}=10 \mathrm{~g}=98 \mathrm{~N}$
$\mathrm{T}=2 \mathrm{a}$ [Newton's II law for 2 kg block]
$\Rightarrow \mathrm{a}=49 \mathrm{~m} / \mathrm{s}^{2}$
Q. 57 (2)

$\mathrm{F}=\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2} \quad$ [Newton's law for system]
$200=10 \times 12+20 \times \mathrm{a}$ $\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$.
Q. 58 (3)
Q. 59 (2)

$$
\mathrm{T}=\frac{2 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{~g}}{\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)} \Rightarrow \mathrm{T}=\frac{2 \times 5 \times 1 \times 10}{6}=\frac{50}{3}
$$

$$
2 \mathrm{~T}=\frac{100}{3} \approx 33.3 \mathrm{~kg}
$$

The spring balance reads $2 \mathrm{~T}=33.33 \mathrm{kgwt}<60 \mathrm{kgwt}$
Q. 60 (2)

\therefore Acceleration of $3 \mathrm{~kg}=\frac{6}{3}=2 \mathrm{~m} / \mathrm{s}^{2}$

Q. 61 (4)

Weight of man in stationary lift is mg .

$\mathrm{mg}-\mathrm{N}=\mathrm{ma}$ [Newton's II law for man]
$\Rightarrow \mathrm{N}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
Weight of man in moving lift is equal to N .
$\Rightarrow \frac{\mathrm{mg}}{\mathrm{m}(\mathrm{g}-\mathrm{a})}=\frac{3}{2} \Rightarrow \mathrm{a}=\frac{\mathrm{g}}{3}$
Q. 62 (1)
$\mathrm{F}<\mathrm{f}_{\text {smax }}$

friction $=\mathrm{F}$
For $\mathrm{F}>\mathrm{f}_{\text {max }}$
friction constant
Q. 63 (1)
Q. 64 (1)

Monkey is moving up due to friction force

$\mathrm{f}_{\mathrm{r}}-\mathrm{mg}=\mathrm{ma}$
$\mathrm{f}_{\mathrm{r}}=\mathrm{m}(\mathrm{a}+\mathrm{g})$
towards up.
Q. 65 (3)

Floor will provide the normal force and friction force the net reaction is provide by the floor is R .

Q. 66 (4)
$m_{A} g \sin 30=\mu \mathrm{m}_{\mathrm{A}} g \cos 30$
$m_{B} g \sin 40=\mu m_{B} g \cos 40$
Does not depend on mass so all three are possible.
Q. 67 (2)
$\mathrm{f}_{\text {max }}>\mathrm{mg} \sin \theta$
$\theta \uparrow \sin \theta \uparrow$
at this condition block remains rest when
$\mathrm{mg} \sin \theta>\mathrm{f}_{\text {max }}$
sliping slant

For $\theta<$ angle of repose
$\mathrm{F}_{\mathrm{c}}=\mathrm{mg}$

For $\theta>$ angle of repose as $\theta \uparrow \mathrm{f}=\mu \mathrm{mg} \cos \theta \downarrow$

$$
\mathrm{N}=\mathrm{mg} \cos \theta \downarrow
$$

Q. 68 (2)

$$
\mu \lambda L\left(1-\frac{1}{n}\right) g=\lambda \frac{L}{n} g
$$

000000000 0
0
0
0
0
0 \downarrow L/m
$\mu=\frac{1}{n-1}$
Q. 69 (2)
$\mathrm{f}_{\text {max }}=\mu \mathrm{mg} \cos \theta$
$f_{s_{\max }}=0.7 \times 2 \times 9.8 \times \frac{\sqrt{3}}{2}=7 \sqrt{3}$
$\mathrm{mg} \sin \theta=9.8$
As $m g \sin \theta<\mathrm{f}_{\text {smax }}$ so friction requird is $\mathrm{mg} \sin \theta$.
Q. 70 (1)
$\mathrm{N}=\mathrm{mg} \cos \theta$
$\mathrm{f}_{\mathrm{s}} \leq \mu \mathrm{N}$
$\mathrm{mg} \sin \theta \leq \mu \mathrm{mg} \cos \theta$
$\mu \geq 1$

Q. 71 (4)
$\mathrm{N}=\mathrm{Mg}-\mathrm{Mg} \cos \theta, \mathrm{f}_{\max }=\mu \mathrm{N}$
$\mathrm{f}_{\max }=\mu \mathrm{Mg}(1-\cos \theta)$
$M g \sin \theta \geq f_{\text {max }}$
$M g \sin \theta \geq \mu \mathrm{Mg}(1-\cos \theta)$
$\mu \leq \sin \theta /(1-\cos \theta)$

$\mu \leq \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos ^{2} \frac{\theta}{2}}$

$$
\mu \leq \tan \frac{\theta}{2}
$$

Q. 72 (1)

Friction not depend on surface Area so angle remain same.
\therefore Angle $=30^{\circ}$
Q. 73 (3)
$\mathrm{v}=\mathrm{u}+\mathrm{at} \Rightarrow \mathrm{a}_{\mathrm{A}}=-\mu \mathrm{g}$
$\mathrm{a}_{\mathrm{B}}=-\mu \mathrm{g} \Rightarrow \mathrm{a}=$ same $\Rightarrow \mathrm{u}=$ same
Time taken to stop is also same
Does not depend on mass

$\mathrm{F} \sin \theta+\mathrm{N}=\mathrm{mg}$
or $\mathrm{N}=\mathrm{mg}-\mathrm{F} \sin \theta$
$\mathrm{F} \cos \theta-\mathrm{f}_{\mathrm{r}}=\mathrm{ma}$
on solving (1), (2) \& (3)
$\mathrm{a}=\frac{\mathrm{F} \cos \theta-\mu(\mathrm{mg}-\mathrm{F} \sin \theta)}{\mathrm{m}}$
$a=\frac{F}{m}(\cos \theta+\mu \sin \theta)-\mu g$
Q. 75 (1)
move with a constant velocity
So $\mathrm{ma}=\mathrm{m} \mu \mathrm{g}$ (in negative direction)
$\mathrm{a}=\mu \mathrm{g}$
$\Rightarrow v^{2}-u^{2}=2$ as $\quad v_{f}^{2}=v_{i}^{2}+2 \mathrm{as}$
$\mathrm{v}=\sqrt{2 \mu \mathrm{gs}}$ here $\mathrm{v}_{\mathrm{f}}=0, \mathrm{v}_{\mathrm{i}}=\mathrm{v}$
Q. 76

Let length is ℓ of inclined plane, then
$\mathrm{f}_{\mathrm{r}}=\mu \mathrm{N}=\mu \mathrm{mg} \cos \theta$ (when friction is present)
$m g \sin \theta-f_{r}=m a$
$a=g(\sin \theta-\mu \cos \theta)$
$\mathrm{mg} \sin \theta-\mu \mathrm{mg} \cos \theta=\mathrm{ma}$

Now $\ell=\frac{1}{2} \mathrm{at}_{1}{ }^{2}=\frac{1}{2} \mathrm{~g}(\sin \theta-\mu \cos \theta) \mathrm{t}_{1}{ }^{2}$
Now $\ell_{1}=\ell_{2}=\ell$
Without friction
$\mathrm{ma}=\mathrm{mg} \sin \theta, \mathrm{a}=\mathrm{g} \sin \theta$
$\ell_{2}=\ell=\frac{1}{2} \mathrm{~g} \sin \theta \mathrm{t}_{2}{ }^{2}$
$\mathrm{t}_{1}=2 \mathrm{t}_{2}, \mathrm{t}_{1}{ }^{2}=\mathrm{t}$ and $\mathrm{t}_{2}=\mathrm{t} / 2$
$\frac{1}{2} g(\sin \theta-\mu \cos \theta) \mathrm{t}^{2}=\frac{1}{2} \mathrm{~g}(\sin \theta-0 \times \cos \theta)\left(\frac{\mathrm{t}^{2}}{4}\right)$
$4(\sin \theta-\mu \cos \theta)=\sin \theta$
$\Rightarrow \mu=\frac{3}{4}=0.75$

Q. 77 (1)

$\mathrm{V}^{2}=2 \times \mathrm{g} \sin \theta \times 1$
$\frac{\mathrm{v}^{2}}{\mathrm{n}^{2}}=2 \times(\mathrm{g} \sin \theta-\mu \mathrm{g} \cos \theta)$
$\sin \theta\left(1-\frac{1}{\mathrm{n}^{2}}\right)=\mu \cos \theta$
$\mu=\tan \theta\left(1-\frac{1}{\mathrm{n}^{2}}\right)$

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. 1 (B)

In upward motion
as v \downarrow
Force \downarrow
acceleration \downarrow
and takes less time to reach at top.
Q. 2 (B)
F_{1} may be equal to F_{2}
Q. 3 (A)

$2 \mathrm{~T} \sin \theta=\mathrm{W}$
$\mathrm{T}=\frac{\mathrm{W}}{2} \operatorname{cosec} \theta$
Q. 4 (A)

$\mathrm{T}_{1} \cos 45^{\circ}=\mathrm{T}_{2} \cos 45^{\circ}$
$\Rightarrow \mathrm{T}_{1}=\mathrm{T}_{2}$
$\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) \sin 45^{\circ}=\mathrm{mg}$
$\sqrt{2} \mathrm{~T}_{1}=\mathrm{mg}$
$\mathrm{T}_{1}=\frac{\mathrm{mg}}{\sqrt{2}}$.
$\mathrm{T} \sin \theta=\mathrm{mg}+\frac{\mathrm{T}_{1}}{\sqrt{2}}$
$\mathrm{T} \sin \theta=\mathrm{mg}+\frac{\mathrm{mg}}{2}$
$\mathrm{T} \cos \theta=\frac{\mathrm{T}_{1}}{\sqrt{2}}=\frac{\mathrm{mg}}{2}$
dividing (i) and (ii)
$\tan \theta=\frac{M+m / 2}{m / 2}=1+\frac{2 M}{m}$ Ans.
$\begin{array}{ll}\text { Q. } 5 \quad(C) \\ & v=u+a_{1} t_{1}+a_{2} t_{2}+a_{3} t_{3}\end{array}$
Q. 6 (C)

$\mathrm{w}-\mathrm{f}=\mathrm{ma} \mathrm{w}-\mathrm{ma}=\mathrm{g}$
$\mathrm{w}\left\{1-\frac{\mathrm{m}}{\mathrm{w}} \mathrm{a}\right\}=\mathrm{fw}\left\{1-\frac{\mathrm{m}}{\mathrm{mg}} \mathrm{a}\right\}=\mathrm{fw}\left\{1-\frac{\mathrm{a}}{\mathrm{g}}\right\}=\mathrm{f}$
Q. 7
(A)

In vertical direction
$50+\frac{\mathrm{N}_{1}}{\sqrt{2}}=\frac{\mathrm{N}_{2} \sqrt{3}}{2}$
In horizontal direction
$\frac{\mathrm{N}_{1}}{\sqrt{2}}=\frac{\mathrm{N}_{2}}{2}$
On solving eq ${ }^{\mathrm{n}}(1)$ and (2) we get
N_{1} and N_{2}
$\mathrm{N}_{1}=96.59 \mathrm{~N}, \mathrm{~N}_{2}=136.6 \mathrm{~N}$
Q. 8
(B)

$$
a_{1}=\frac{2 m g-m g}{m} a_{2}=\frac{(2 m-m) g}{2 m+m} a_{3}=0
$$

$$
\mathrm{a}_{1}=\mathrm{g} \mathrm{a}_{2}=\frac{\mathrm{g}}{3}
$$

So, $a_{1}>a_{2}>a_{3}$
Q. 9 (C)

$\mathrm{N}=\mathrm{Mg} \cos \theta \rightarrow$ force eserted by plane on the block.
Q. 10 (B)

$\mathrm{ma} \cos \theta=m g \sin \theta$
$\mathrm{a}=\mathrm{g} \tan \theta$
$\mathrm{N}=\mathrm{mg} \cos \theta+\mathrm{ma} \sin \theta$

$$
=m g \cos \theta+\frac{m g \sin ^{2} \theta}{\cos \theta}=\frac{m g}{\cos \theta}
$$

Q. 11 (A)
legnth of
groove =
$\sqrt{3^{2}+4^{2}}$
$=5 \mathrm{~m}$
acceleration along the incline $=\mathrm{g} \sin \theta=\mathrm{g} \sin 30^{\circ}=$ g/2
acceleration along the groove $=\mathrm{g} / 2 \cos (90-\alpha)=\mathrm{g} /$
$2 \sin \alpha=\frac{g}{2} \times \frac{4}{5}=4 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}^{2}=2 \mathrm{as}$
$v=\sqrt{2 \times 4 \times 5}=\sqrt{40} \mathrm{~m} / \mathrm{sec}$.

Q. 12 (C)

(A) $40 \cos 30^{\circ}=20 \sqrt{3} \mathrm{~N}$
(B) weight $=5 \mathrm{~kg}$
(C) $\mathrm{Net}=$ zero

Q. 13 (B)

$\mathrm{M}=250 \mathrm{~kg}$
$\mathrm{a}_{\mathrm{A}}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{100}{250}=\frac{2}{5}$ and $\mathrm{a}_{\mathrm{B}}=\frac{100}{500}=\frac{1}{5}$

$\mathrm{a}_{\mathrm{AB}}=\mathrm{a}_{1}+\mathrm{a}_{2}=\frac{2}{5}+\frac{1}{5}=\frac{3}{5}$
$100=\frac{1}{2}\left(\mathrm{a}_{1}+\mathrm{a}_{2}\right) \mathrm{t}^{2} \Rightarrow \quad 100=\frac{1}{2}\left(\frac{3}{5}\right) \mathrm{t}^{2}$
$\mathrm{t}^{2}=333.33$
$\mathrm{t}=18.25=18.3 \mathrm{sec}$

Q. 14 (C)

Given
$\vec{a}+\vec{b}+\vec{c}+\vec{d}+\vec{e}=3 \hat{i}$
$\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{d}}+\overrightarrow{\mathrm{e}}=-\hat{\mathrm{i}}$
$\vec{a}+\vec{c}+\vec{d}+\vec{e}=24 \hat{j}$
(1) $-(2) \Rightarrow \overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}$
(1) $-(3) \Rightarrow \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-24 \hat{\mathrm{j}}$

Now $\vec{a}+\vec{b}=7 \hat{i}-24 \hat{j}$
$|\vec{a}+\vec{b}|=\sqrt{49+(24)^{2}}=25$
Q. 15 (D)

Case- 1 seen from ground is same as Case- 2 seen from train.

$$
\begin{aligned}
\mathrm{v} & =\frac{\mathrm{dx}}{\mathrm{dt}}=-20 \sin \theta \frac{\mathrm{~d} \theta}{\mathrm{dt}} \\
\mathrm{u} & =\frac{\mathrm{dy}}{\mathrm{dt}}=-16 \sin \theta \frac{\mathrm{~d} \theta}{\mathrm{dt}} \\
\Rightarrow \mathrm{u} & =\frac{4}{5} \mathrm{v}=0.8 \mathrm{v}
\end{aligned}
$$

Q. 16 (A)

Let L_{1} and L_{2} be the portions (of length) of rope on left and right surface of wedge as shown
\therefore magnitude of acceleration of rope

$a=\frac{\frac{M}{L}\left[L_{1} \sin \alpha-L_{2} \sin \beta\right] g}{M}=0$
$\left(\because \mathrm{L}_{1} \sin \alpha=\mathrm{L}_{2} \sin \beta\right)$
Q. 17 (A)

From constrained
$a_{1}+a_{2}+a_{3}+a_{4}=0$
$-a-a_{B}-a_{B}+f=0$
$\mathrm{a}_{\mathrm{B}}=\left(\frac{\mathrm{f}}{2}-\frac{\mathrm{a}}{2}\right)=\frac{1}{2}(\mathrm{f}-\mathrm{a}) \uparrow$
Q. 18 (A)

From constrained

$$
\begin{aligned}
& \mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}+\mathrm{a}_{5}+\mathrm{a}_{6}=0 \\
& -\mathrm{a}_{\mathrm{c}}+2+2-1-1-\mathrm{a}_{\mathrm{c}}=0 \\
& \mathrm{a}_{\mathrm{C}}=1 \mathrm{~m} / \mathrm{s}^{2} \uparrow
\end{aligned}
$$

Q. 19 (A)

From constrained
$v_{1}+v_{2}+v_{3}+v_{4}=0$
$v-0.6-0.6-0.6=0$
$\mathrm{V}=1.8 \mathrm{~m} / \mathrm{s}$
Q. 20 (A)

In horizontal direction net acceleration is zero.
So, $b \cos \alpha_{2}=a \cos \alpha_{1}$

$$
\mathrm{b}=\frac{\mathrm{a} \cos \alpha_{1}}{\cos \alpha_{2}}
$$

Q. 21 (B)

By setting string length constant

$\mathrm{L}=3 \ell_{1}+2 \ell_{2}$
$\Rightarrow 3 \mathrm{v}_{\mathrm{A}} \equiv 2 \mathrm{v}_{\mathrm{N}_{0}}$ $\frac{3}{2}$

$$
\mathrm{v}_{\mathrm{AB}}=\mathrm{v}_{\mathrm{A}}-\mathrm{v}_{\mathrm{B}}=\frac{\mathrm{v}_{0}}{2} \text { towards right. }
$$

Q. 22 (A)

From Constrain equation $2 \mathrm{a}=3 \mathrm{~b}$

$\mathrm{F}-2 \mathrm{~T}=2 \mathrm{ma}$
$3 \mathrm{~T}=4 \mathrm{mb}$
On solving (1), (2) \& (3)

$$
\mathrm{b}=\frac{3 \mathrm{~F}}{17}
$$

Q. 23 (B)

constrain equation $2 \mathrm{a}=3 \mathrm{~b}+\mathrm{c}$
$\mathrm{F}-2 \mathrm{~T}=2 \mathrm{ma}$
$\mathrm{T}=\mathrm{mc}$
$3 \mathrm{~T}=4 \mathrm{mb}$
on solving above four equation $b=\frac{3 F}{21 \mathrm{~m}} \mathrm{~m} / \mathrm{s}^{2}$
Q. 24 (A)

From Constrain equation
$-b+0+0-b / 2+b \frac{\sqrt{3}}{2}+a-b \frac{\sqrt{3}}{2}=0$
$a=\frac{3 b}{2}$
F.B.D of 8 kg block

$T+\frac{N \sqrt{3}}{2}=8 \mathrm{~b}$
F.B.D of 2 kg block

$m g \frac{\sqrt{3}}{2}+\frac{m b}{2}-T=m a$
$\mathrm{N}+\mathrm{mb} \frac{\sqrt{3}}{2}=\frac{\mathrm{mg}}{2}$
On solving above four equation, we get $\mathrm{b}=\frac{30 \sqrt{3}}{23} \mathrm{~m} / \mathrm{s}^{2}$
Q. 25 (B)

$\mathrm{F}=\int_{\pi / 2-l / \mathrm{r}}^{\pi / 2} \ell \operatorname{rg} \cos \theta \mathrm{~d} \theta$
$\mathrm{~F}=\lambda \mathrm{rg}\left[1-\cos \frac{\ell}{\mathrm{r}}\right]$
$\mathrm{a}=\frac{\mathrm{m}}{l} \cdot \frac{\mathrm{rg}}{\mathrm{m}}\left[1-\cos \frac{\ell}{\mathrm{r}}\right]$
$\mathrm{a}=\frac{\mathrm{rg}}{\ell}\left[1-\cos \frac{\ell}{\mathrm{r}}\right]$
Q. 26 (A)

Before cutting After cutting

$\mathrm{a}=\frac{3 \mathrm{~g}-\mathrm{kx}}{3}=\frac{15}{3}=5 \mathrm{~m} / \mathrm{s}^{2}$
Q. 27 (B)

$\mathrm{T}=\mathrm{Kx}+2 \mathrm{mg}$
$\mathrm{Kx}=\mathrm{mg}$

$\mathrm{T}=3 \mathrm{mg}$
After cutting $\mathrm{T}=0$
downwards net force
$\therefore \quad \mathrm{a}=\frac{3 \mathrm{mg}}{2 \mathrm{~m}}=\frac{3 \mathrm{~g}}{2}$
Q. 28
(i) A, (ii) A, (iii) A, (iv) C, (v) B, (vi) C, (vii) C, (viii) B

(a) $\mathrm{v}=0$ or $\mathrm{v}=$ constant, $\mathrm{a}=0$
$\mathrm{w}=\mathrm{m}(\mathrm{g}+\mathrm{a})$
$=10(\mathrm{~g}+0)$
$=100 \mathrm{~N}$
(b) $\mathrm{v}=0$ or $\mathrm{v}=$ constant
$a=$ upward $=2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{w}=\mathrm{m}(\mathrm{g}+\mathrm{a})$
$=120 \mathrm{~N}$
(c) $\mathrm{v}=0$ or $\mathrm{v}=$ constant
$\mathrm{a}=$ downward $=2 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{w}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$=80 \mathrm{~N}$

Q. 29 (C)

Tension in the string is 60 N .
So spring balance reading $=6 \mathrm{~kg}$ or 60 N

Q. 30 (B)

If upper spring is cut
$\underset{\underset{\sim}{\downarrow}}{\stackrel{\uparrow^{2}}{\mathrm{~T}^{2}}} \downarrow 6_{\mathrm{mg}}-\mathrm{T}_{2}=\mathrm{m} \times 6$

If lower spring is cut :

$$
\begin{aligned}
& \stackrel{\underset{\mathrm{mg}}{\downarrow} \stackrel{\mathrm{~T}}{1}^{\square} \downarrow \mathrm{a}}{\mathrm{~T}} \mathrm{mg}-\mathrm{T}_{1}=\mathrm{ma} \\
& \text { adding (i) and (ii) } \\
& 2 \mathrm{mg}-\left\{\mathrm{T}_{1}+\mathrm{T}_{2}\right\}=\mathrm{m}(\mathrm{a}+6) \\
& 2 \mathrm{mg}-\mathrm{mg}=\mathrm{m}(\mathrm{a}+6) \\
& m g=m(a+6)
\end{aligned}
$$

Q. 31 (B)

$900-300-\mathrm{m} \times 10=\mathrm{ma} 600=\mathrm{m}(10+\mathrm{a})$
$\frac{600}{10+a}=m$
$\frac{600}{10+10}=\mathrm{m}=\frac{600}{20}=30 \mathrm{~kg}$.
Q. 32 (C)

For first case tension in spring will be $\mathrm{T}_{\mathrm{s}}=2 \mathrm{mg} \quad$ just after ' A ' is released.
$2 \mathrm{mg}-\mathrm{mg}=\mathrm{ma} \Rightarrow \mathrm{a}=\mathrm{g}$
In second case $\mathrm{T}_{\mathrm{s}}=\mathrm{mg}$

$$
\begin{aligned}
& 2 m g-m g=2 m b \\
& b=g / 2 \\
& a / b=2
\end{aligned}
$$

Q. 33 (A)

F.B.D. of mass m is w.r.t. trolley
$\mathrm{T} \sin (\alpha-\theta)+m g \sin \theta-\mathrm{F}_{\mathrm{P}}=0 \quad$ [Equilibrium of mass in x direction w.r.t. trolley]
$\Rightarrow \mathrm{T} \sin (\alpha-\theta)+\mathrm{mg} \sin \theta-\mathrm{mg} \sin \theta=0$
$\Rightarrow \mathrm{T} \sin (\alpha-\theta)=0$
since T cant be zero, $\sin (\alpha-\theta)$ must be zero $\Rightarrow \alpha=\theta$
Q. 34 (C)

acceleration of point A and B must be some along the line \perp to the surface
$\Rightarrow a \sin \theta=\mathrm{g} \cos \theta$
$\mathrm{a}=\mathrm{g} \cot \theta$
Q. 35 (C)

$\mathrm{a}=\frac{\mathrm{N} \sin \theta}{\mathrm{M}}$ along $(-\mathrm{ve} \times$ axis $)$
Q. 36 (i) A, (ii) A, (iii) C, (iv) D, (v) B, (vi) D, (vii) B, (viii) B
(a)

(b)

(c)

$$
\mathrm{N}=\mathrm{mg}-\mathrm{ma}
$$

Independent of the direction of velocity.
Q. 37 (B)

If $\mathrm{v}=0$ or $\mathrm{v}=$ constant then frame is inertial.
Q. 38 (B)

Friction force will more then man will not slip. N is More
Q. 39 (B)

$\mathrm{T} \cos 37^{\circ}=\mathrm{f}$
$\mathrm{N}+\mathrm{T} \sin 37^{\circ}=\mathrm{mg}$
$\therefore \mathrm{N}=100 \mathrm{~g}-\mathrm{T} \sin 37^{\circ}=100 \mathrm{~g}-\frac{3 \mathrm{~T}}{5}$
and $\mathrm{T} \cos 37^{\circ}=\mu \mathrm{N}$

$$
T \cos 37^{\circ}=\mu\left(100 g-\frac{3 T}{5}\right)
$$

on solving $\mathrm{T}=\frac{1000}{3} \quad\left(\mu=\frac{1}{3}\right)$
$\mathrm{T}-\mathrm{Mg}=\mathrm{ma}_{\text {max }}$
$\frac{1000}{3}-250=25 \times \mathrm{a}_{\max }$
$\mathrm{a}_{\text {max }}=\frac{\mathrm{g}}{3}=\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$
Q. 40 (B)

$\mathrm{h}=\mathrm{r}-\mathrm{r} \cos \theta$
$\mu \mathrm{mg} \cos \theta=\mathrm{mg} \sin \theta$
$\tan \theta=u \cos \theta=\frac{1}{\sqrt{1+\mu^{2}}}$
$h=r(1-\cos \theta)=r\left[1-\frac{1}{\sqrt{1+\mu^{2}}}\right]$
Q. 41 (A)

$\mathrm{f}_{\mathrm{r}}=\mu \mathrm{N}=\mu(\mathrm{mg}+\mathrm{Q} \cos \theta)$
$\mathrm{f}_{\mathrm{r}}=\mathrm{P}+\mathrm{Q} \sin \theta$
$\mu=\frac{(\mathrm{P}+\mathrm{Q} \sin \theta)}{(\mathrm{mg}+\mathrm{Q} \cos \theta)}$
Q. 42
(C)

$\mathrm{F}=\mathrm{mg} \sin 30^{\circ}+\mu \mathrm{mg} \cos 30^{\circ}$
$=\frac{\mathrm{mg}}{2}[1+\mu \sqrt{3}]$
...(1)
$\mathrm{F}+\mathrm{f}=\mathrm{mg} \sin 60^{\circ}$

$$
\begin{equation*}
F=\frac{m g}{2}[\sqrt{3}-\mu] \tag{2}
\end{equation*}
$$

Now (1) = (2)

$$
1+\mu \sqrt{3}=\sqrt{3}-\mu \Rightarrow \mu=\frac{(\sqrt{3}-1)}{(\sqrt{3}+1)}
$$

Q. 43 (A)

For equilibrium condition
$(M+m) g \sin \theta=\mu(M+m) g \cos \theta$
$\tan \theta=\mu$
Here $\mu \rightarrow$ coefficient of friction between board \& log.
Q. 44

Initially
$\mathrm{F}-\mathrm{f}_{\mathrm{r}_{\mathrm{A}}}=0 \Rightarrow \mathrm{t}-\mu_{\mathrm{s}} \mathrm{mg}=0 \Rightarrow \mathrm{t}=\mu_{\mathrm{s}} \mathrm{mg}$
[till or $\mathrm{f}_{\mathrm{rB}}=\mu_{\mathrm{s}} \mathrm{mg}, \mathrm{t}-\mu_{\mathrm{s}} \mathrm{mg}=\mu_{\mathrm{s}} \mathrm{mg}$
$\mathrm{t}=2 \mu_{\mathrm{s}} \mathrm{mg}$]
$\mathrm{T}=\mathrm{F}-\mathrm{f}_{\mathrm{rA}}=\mathrm{f}_{\mathrm{rB}}$
$\mathrm{T}=\mathrm{t}-\mu_{\mathrm{s}} \mathrm{mg}=\mathrm{f}_{\mathrm{rb}}$
$\mathrm{t}=\mu_{\mathrm{s}} \mathrm{mg}$ block be will not move
$\mu_{\mathrm{s}} \mathrm{mg}<\mathrm{t} \leq 2 \mu_{\mathrm{s}} \mathrm{mg}$ block be will not move, static friction will work
after $\mathrm{t}>2 \mu_{\mathrm{s}} \mathrm{mg}$ kinetic friction will work
$\mathrm{a}=\frac{\mathrm{F}-\mu_{\mathrm{s}} \mathrm{mg}-\mu_{\mathrm{k}} \mathrm{mg}}{\mathrm{m}}$
So $\mathrm{T}=\mathrm{F}-\mu_{\mathrm{s}} \mathrm{mg}-\mathrm{ma}$ after $\mathrm{t}=2 \mu_{\mathrm{s}} \mathrm{mg}$

Q. 45 (B)
$\frac{1}{2} \mathrm{mv}_{0}^{2}=\mu \mathrm{mgL}$
$\mathrm{v}_{0}=\sqrt{2 \mu \mathrm{gL}}$

Q. 46 (A)

$m g \sin \theta-f_{r}=m a$
$\Rightarrow \quad m g \sin \theta-\mu m g \cos \theta=m a$
$\mathrm{g}[\sin \theta-\mu \cos \theta]=\mathrm{a}$
$a=\frac{v d v}{d x}$
$\Rightarrow \quad \frac{\mathrm{vdv}}{\mathrm{dx}}=\mathrm{g}\left[\sin \theta-\mu_{0} \mathrm{x} \cos \theta\left[\therefore \mu=\mu_{0} \mathrm{x}\right]\right.$
$\int_{0}^{x} g\left[\sin \theta-\mu_{0} x \cos \theta\right] d x=\int_{0}^{v} v d v$
[Here $\mathrm{v}=0$]
[Here initial \& final velocity is zero]
$\therefore \quad \mathrm{g}\left[\sin \theta \mathrm{x}-\mu_{0} \frac{\mathrm{x}^{2}}{2} \cos \theta\right]=0$
$\Rightarrow x=\frac{2}{\mu_{0}} \tan \theta$
Q. 47 (A)
$\int_{0}^{x / 2} g\left(\sin \theta-\mu_{0} x \cos \theta\right) d x=\int_{0}^{v} v d v$
$\mathrm{g}\left[\sin \theta \cdot \frac{\mathrm{x}}{2}-\frac{\mu_{0}}{2}\left(\frac{\mathrm{x}}{2}\right)^{2} \cos \theta\right]=\frac{\mathrm{v}^{2}}{2}$
Keeping the value
$\mathrm{x}=\frac{2}{\mu_{0}} \tan \theta \Rightarrow \mathrm{v}=\sqrt{\frac{\mathrm{g} \tan \theta \sin \theta}{\mu_{0}}}$
Q. 48 (D)
$a=g \sin \theta-\mu g \cos \theta$
At the x increases, $\mathrm{u} \uparrow \mathrm{a} \downarrow$
so when $\mathrm{a}=0$ instant give maximum speed $\mathrm{g} \sin 37^{\circ}-(0.3) \mathrm{xg} \cos 37^{\circ}=0$

$$
6-\frac{3}{10} \times x \times 8=0
$$

$$
\Rightarrow \quad x=\frac{60}{3 \times 8}=\frac{20}{8}=2.5 \mathrm{~m}
$$

Q. 49 (a) B, (b) D, (c) A
(a) $\mathrm{T}-\mathrm{mg} \sin 45^{\circ}=\mathrm{ma}$
$\mathrm{T}-\frac{\mathrm{mg}}{\sqrt{2}}=$ Given $\mathrm{a}=\frac{\mathrm{g}}{5 \sqrt{2}}$

$$
\mathrm{T}=\frac{6}{5} \frac{\mathrm{mg}}{\sqrt{2}}
$$

(b) $3 \mathrm{mg} \sin 45^{\circ}-\mathrm{T}-\mu \mathrm{N}=3 \mathrm{ma}$ $\frac{3 \mathrm{mg}}{\sqrt{2}}-\frac{6 \mathrm{mg}}{5 \sqrt{2}}-\frac{3 \mathrm{mg}}{5 \sqrt{2}}=\mu\left(3 \mathrm{mg} \cos 45^{\circ}\right)$
$3 \mathrm{mg}\left[\frac{1}{\sqrt{2}}-\frac{2}{5 \sqrt{2}}-\frac{1}{5 \sqrt{2}}\right]=3 \mathrm{mg} \times \frac{\mu}{\sqrt{2}}$
$\mu=\frac{2}{5}$
(c)

So $2 \mathrm{~T} \cos 45^{\circ}=\mathrm{F}$
$2 \times \frac{6 \mathrm{mg}}{5 \sqrt{2}} \times \frac{1}{\sqrt{2}}=\mathrm{F}$
$\therefore \mathrm{F}=\frac{6 \mathrm{mg}}{5}$ downward
Q. 50 (C)

$\mathrm{f}_{1 \text { max }}=15 \mathrm{~N}, \mathrm{f}_{2 \text { max }}=15 \mathrm{~N}, \mathrm{f}_{3 \text { max }}=6 \mathrm{~N}$
Q. 51 (A)

System is at rest contract

So,

At rest
$\mathrm{f}=\mathrm{T}=\mu \mathrm{N}$
$\mathrm{N}=50 / 0.2=250$ newton
$\mathrm{m}_{\mathrm{A}} \mathrm{g}+\mathrm{m}_{\mathrm{c}} \mathrm{g}=250$
$10 \times 10+\mathrm{m}_{\mathrm{c}} \times 10=250$
so $\mathrm{m}_{\mathrm{c}}=15 \mathrm{~kg}$
Q. 52 (D)

$$
a_{\text {net }}=a-\mu g a_{n e t}=a-\mu g
$$

$\therefore \mathrm{f}_{\mathrm{r}}$ static and f_{r} kinetic both provide same acceleration to m_{1} and m_{2}.
So no relative motion between them
$\therefore \mathrm{x}=0$ (Always)
Q. 53 (C)

For $\mathrm{t}<1 \mathrm{sec} \therefore \mathrm{a}_{\mathrm{B}}=2 \mathrm{~m} / \mathrm{s}^{2}$ and velocity of truck is $5 \mathrm{~m} / \mathrm{s}$
\therefore Friction will act after 1 sec due to relative motion between block and truck $5=2 \times \mathrm{t}, \mathrm{t}=2.5 \mathrm{sec}$.

Q. $54 \quad$ (A)

$$
\{\mathrm{a}=\mu \mathrm{g}=0.2 \times 10=2\}
$$

acceleration $=2 \mathrm{~m} / \mathrm{s}^{2}$
So, $4=2 \times \mathrm{t} \quad \Rightarrow \quad \mathrm{t}=2 \mathrm{sec}$
$\therefore \quad S=\frac{1}{2} .2 .(2)^{2}=4 \mathrm{~m}$
Q. 55 (C)

$\mathrm{f}_{1}=0.2 \times 40=8 \mathrm{~N}$
$\mathrm{f}_{2}=0.1 \times 90=9 \mathrm{~N}$
Max. acceleration for system $\mathrm{a}=\frac{8}{4}=2 \mathrm{~m} / \mathrm{s}^{2}$
Minimum force needed to cause system to move $=$ 9 N

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (A, B, C , D)

Newton's III ${ }^{\text {rd }}$ Law.
Q. 2 (A, B, C)
$\mathrm{F}=\alpha \mathrm{t}$
$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\alpha}{\mathrm{m}} \mathrm{t}$
....(i)
straight line curve $1 \mathrm{dv}=\frac{\alpha}{\mathrm{m}} \mathrm{tdt}$
$\mathrm{v}=\frac{\alpha}{\mathrm{m}} \frac{\mathrm{t}^{2}}{2}$ curve 2
...(ii)
divide (ii) by
$\mathrm{v}=\frac{\mathrm{t}}{2} \mathrm{a}=\frac{\mathrm{a}}{2} \times \frac{\mathrm{am}}{\alpha}=\frac{\mathrm{a}^{2} \mathrm{~m}}{2 \alpha} \rightarrow$ Paacebole curve 2.
Q. 3 (A,C)

$\theta \uparrow \cos \theta \downarrow \mathrm{T} \uparrow$
on increasing $\theta, \cos \theta$ decreases and hence T increases.
Q. 4 (B,D)

$\mathrm{T}+\mathrm{mg} \sin \theta=\mathrm{ma}$
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
on solving (1) \& (2)
$\mathrm{a}=\frac{3 \mathrm{~g}}{4} \quad \mathrm{~T}=\frac{3 \mathrm{~g}}{4}$
Q. 5 (A,B,C)

Slope of $x-t$ curve gives velocity In region $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ have constant slope.
$\Rightarrow \mathrm{a}=0$
\Rightarrow net force $=0$
Q. 6 (A,B,D)

(A) $\mathrm{T}=\mathrm{m}_{1} \mathrm{~g}<\mathrm{m}_{2} \mathrm{~g}$
\therefore Acceleration of m_{2} is \downarrow
(B) $\mathrm{T}=\mathrm{m}_{2} \mathrm{~g}>\mathrm{m}_{1} \mathrm{~g}$
\therefore acceleation of m_{1} is \uparrow
(C) Masses is different
\therefore Not possible
(D) $\mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{1} \mathrm{a}$

$$
\mathrm{m}_{2} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}
$$

on solving $a=\frac{\left(m_{2}-m_{1}\right) g}{\left(m_{1}+m_{2}\right)}$ Possible
Q. 7 (A, B, D)

By string constraint

$$
\begin{equation*}
\mathrm{a}_{\mathrm{A}}=2 \mathrm{a}_{\mathrm{B}} \tag{1}
\end{equation*}
$$

equation for block A .

$$
\begin{equation*}
10 \times 10 \times \frac{1}{\sqrt{2}}-\mathrm{T}=10 \mathrm{a}_{\mathrm{A}} \tag{2}
\end{equation*}
$$

equation for block B.

$$
2 \mathrm{~T}-\frac{400}{\sqrt{2}}=40 \mathrm{a}_{\mathrm{B}}
$$

Solving equation (1), (2) \& (3) we get

$$
\mathrm{a}_{\mathrm{A}}=\frac{-5}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{B}}=\frac{-5}{2 \sqrt{2}} \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~T}=\frac{150}{\sqrt{2}} \mathrm{~N}
\end{aligned}
$$

Q. 8 (A, C)

$\mathrm{T}=\mathrm{m}_{1} \mathrm{~g}$
when thred is burnt, tension in spring remains same $=\mathrm{m}_{1} \mathrm{~g}$.
$m_{1} g-m_{2} g=m_{2} a\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g=a=$ upwards

Q. 9 (A, C)

$$
\begin{aligned}
& \mathrm{T}=\mathrm{mg}_{\text {eff }}=\mathrm{w}_{\text {eff }} \\
& =5(10+2) \\
& =60 \mathrm{~N} \\
& =6 \mathrm{~kg} \mathrm{f}
\end{aligned}
$$

Q. 10 (B,C)

Apply NLM on the system

$$
\begin{aligned}
& 200=20 a+12 \times 10 \\
& \frac{80}{20}=a=4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

spring Force $=10 \times 12=120 \mathrm{~N}$
Q. 11 (C, D)

Pseudo force depends on acceleraton of frame and mass of object
Q. 12 (B, D)
$\mathrm{f}_{\mathrm{c}}=\mathrm{N}$ (Given)
$\therefore \mathrm{f}_{\mathrm{c}}=\sqrt{\mathrm{N}^{2}+\mathrm{f}^{2}}$
Acceleration to condition $\mathrm{f}=0 \Rightarrow \mathrm{f}_{\mathrm{c}}=\mathrm{N}$
Q. 13 (A,B,C)

$\mathrm{T}-\mu \mathrm{N}=\mathrm{ma}$
As $\mathrm{T} \uparrow$ man
Can have tendency
to move
Q. 14 (A,B,C,D)

$$
\mu=0.6
$$

(A) Acceleration of box $=20 \mathrm{~m} / \mathrm{s}^{2}$
(when consider as system)
Force on Box
$\mathrm{F}=200 \mathrm{~N}$
$\mathrm{N}=200 \mathrm{~N}$
$\mathrm{f}_{\text {max }}=\mu \mathrm{N}=0.6 \times 200=120 \mathrm{~N}$
(B) $\mathrm{f}_{\text {required }}=\mathrm{mg}=10 \times 10=100 \mathrm{~N}$
(C) $\mathrm{f}_{\mathrm{c}}=\sqrt{\mathrm{f}^{2}+\mathrm{N}^{2}}=\sqrt{(100)^{2}+(200)^{2}}=100 \sqrt{5} \mathrm{~N}$

Q. 15 (B,C)

$$
\begin{aligned}
& \quad \mathrm{T}=\mathrm{mg} \\
& \mathrm{~T}=100 \mathrm{mg} \sin 37^{\circ}+0.3 \times 100 \mathrm{~g} \cos 37^{\circ} \\
& {[\text { Put } \mathrm{g}=9.8]} \\
& \mathrm{T}=588+235.2 \\
& \mathrm{mg}=823.2 \Rightarrow \mathrm{~m}=82.33=83 \mathrm{~kg}
\end{aligned}
$$

(b)

$\mathrm{T}+\mathrm{f}=\mathrm{ma}$
$\mathrm{T}+235.2=588$
$\mathrm{T}=588-235.2=352.8$
$\mathrm{m}=35.28 \mathrm{~kg}$

Q. 16 (A,B)

$\mathrm{f}_{\text {static }_{\text {max }}}=15=\mu_{\mathrm{s}} \mathrm{N}$
$\mu_{\mathrm{s}}=\frac{15}{\mathrm{~N}}=\frac{15}{\mathrm{mg}}=\frac{15}{25}=0.6$
Now let μ_{k} then
$15-\mathrm{f}_{\mathrm{r}}=\mathrm{ma} \Rightarrow 15-\mu_{\mathrm{k}} 25=2.5 \mathrm{a}$
$\mu_{\mathrm{k}}=\frac{15-2.5 \mathrm{a}}{2.5}$
Now $x=u t+\frac{1}{2} \mathrm{at}^{2} \Rightarrow 10=0+\frac{1}{2} \times \mathrm{a} \times(5)^{2}$
$\Rightarrow \mathrm{a}=\frac{10 \times 2}{5 \times 5}=\frac{4}{5} \Rightarrow \mathrm{a}=\frac{4}{5} \mathrm{~m} / \mathrm{s}^{2}$
$\therefore \mu_{\mathrm{k}}=\frac{15-2.5 \times 4 / 5}{2.5}=0.52$

Q. 17 (B)

FBD of Block in ground frame :
applying N.L.

Normal on block is the reading of weighing machine i.e. 150 N .
Q. 18 (D)

If lift is stopped \& equilibrium is reached then

So block will lose the contact with weighing machine thus reading of weighing machine will be zero.

Q. 19 (A)

$\mathbf{a}=\frac{950-400}{40}$

$$
\Rightarrow \mathrm{a}=\frac{450}{40}=\frac{45}{4} \mathrm{~m} / \mathrm{s}^{2} \text { Ans. }
$$

Q. 20 (C)

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{p}}=\frac{10 \mathrm{t}}{10}=\mathrm{t} \\
& \therefore \frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{t} \\
& \Rightarrow \int_{0}^{\mathrm{v}} \mathrm{dv}=\int_{0}^{\mathrm{t}} \mathrm{tdt} \\
& \Rightarrow \mathrm{v}=\frac{\mathrm{t}^{2}}{2}
\end{aligned}
$$

Putting $v=2$ we have $t=2 \sec$.
Now $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{t}^{2}}{2} \therefore \mathrm{x}_{\mathrm{p}}=\left[\frac{\mathrm{t}^{3}}{6}\right]_{0}^{2}=\frac{4}{3}$
$\mathrm{x}_{\mathrm{B}}=2 \times 2=4 \mathrm{~m}$

Hence relative displacement $=4-\frac{4}{3}=\frac{8}{3} \mathrm{~m}$
Q. 21 (B)

From above

$$
2 \mathrm{t}=\frac{\mathrm{t}^{3}}{6} \Rightarrow \mathrm{t}^{2}=12 \quad \Rightarrow \mathrm{t}=2 \sqrt{3} \mathrm{sec}
$$

Q. 22 (C)
$\mathrm{a}=\mathrm{t}=4 \therefore$ after 4 seconds $\quad \mathrm{V}_{\mathrm{B}}=2 \mathrm{~m} / \mathrm{s}$ $\mathrm{V}_{\mathrm{p}}=\frac{4^{2}}{2}=8 \mathrm{~m} / \mathrm{s} \therefore \mathrm{V}_{\mathrm{rel}}=8-2=6 \mathrm{~m} / \mathrm{s}$.
Q. 23 (A)

Tension at A
$\mathrm{T}_{\mathrm{A}}=\mathrm{mg}=10 \mathrm{~N}$

Q. 24 (B)

Tension at B
(mass of length $\mathrm{AB}=\frac{1}{2} \mathrm{Kg}$)
$T_{B}=1 \mathrm{~g}+0.5 \mathrm{~g}=15 \mathrm{~N}$
Q. 25 (C)
(mass of length $\mathrm{AC}=1 \mathrm{Kg}$)
Force exertd by support $=\mathrm{T}_{\mathrm{C}}$
$=1 \mathrm{~g}+1 \mathrm{~g}=20 \mathrm{~N}$
Q. 26 (A)
S_{1} is accelerating frame so psuedo force act opposite to frame acceleration
$\mathrm{F}_{\text {Pseudo }}=$ mass of analyzing body \times acceleration of frame
$=2(-5 \hat{i}-10 \hat{j})=-10 \hat{i}-20 \hat{j}$
Q. 27 (B)
S_{2} is inertial frame
$\mathrm{F}=\mathrm{ma}$
So $F=10 \hat{i}+20 \hat{j}$
Q. 28 (A)

With respect to S_{1} frame
Net force $=$ zero.
Q. 29 (C)

$\mathrm{mg}>\mu \mathrm{Mg}$
$m>\mu \mathrm{M}$
Q. 30 (A,C)
(A) $\mathrm{m}<\mu \mathrm{M}$
system is at rest $\mathrm{T}=\mathrm{mg}$
$\mathrm{mg}-\mathrm{T}=\mathrm{ma}$
$\Rightarrow \mathrm{T}=\mathrm{mg}-\mathrm{ma}$
$\& \quad \mathrm{~T}-\mu \mathrm{Mg}=\mathrm{Ma} \quad\{\mathrm{m}>\mu \mathrm{M}\}$
$\Rightarrow \mathrm{T}=\mathrm{Ma}+\mu \mathrm{Mg}$
on analysing $\mu \mathrm{Mg}<\mathrm{T}<\mathrm{mg}$
Q. 31 (A, D)

(A) When $\mathrm{F}=0$

No frictin $\mathrm{b} / \mathrm{w} \mathrm{m} \& \mathrm{M}_{0}$ so system move.
(B) When F is applied then friction develope a range for which M and m are stationary w.r.t M_{0}, such that

(C) Limiting friction between $\mathrm{M}_{0} \& \mathrm{~m}$ is $\mu \mathrm{ma}$ \therefore Dependent on a
(D) When Pseudo acts on M is equal to T then $\mathrm{f}=0$
Q. 32 (BC)

Use Pseudo concept
$\mathrm{T}=\mathrm{Ma}$
$\mathrm{T}=\mathrm{f}+\mathrm{mg}$
$\Rightarrow \mathrm{T}=\mu \mathrm{ma}+\mathrm{ma}$
On using (1) \& (2)
$\mathrm{Ma}=\mu \mathrm{ma}+\mathrm{mg}$
Q. 33 (A) p, r (B) p, r (C) q, s (D) q, r
(A) Let the horizontal component of velocity be u_{x}. Then between the two instants (time interval T) the projectile is at same height, the net displacement $\left(\mathrm{u}_{\mathrm{x}} \mathrm{T}\right)$ is horizontal
\therefore average velocity $=\frac{u_{x} T}{T}=u_{x} \Rightarrow(A) p, r$
(B) Let \hat{i} and \hat{j} be unit vectors in direction of east and north respectively.
$\therefore \overrightarrow{\mathrm{V}}_{\mathrm{DC}}=20 \hat{\mathrm{j}}, \overrightarrow{\mathrm{V}}_{\mathrm{BC}}=20 \hat{\mathrm{i}}$ and $\overrightarrow{\mathrm{V}}_{\mathrm{BA}}=-20 \hat{\mathrm{j}}$
$\therefore-\overrightarrow{\mathrm{V}}_{\mathrm{AD}}=\overrightarrow{\mathrm{V}}_{\mathrm{DC}}+\overrightarrow{\mathrm{V}}_{\mathrm{CB}}+\overrightarrow{\mathrm{V}}_{\mathrm{BA}}=20 \hat{\mathrm{j}}-20 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}=$
$-20 \hat{\mathrm{i}}$
$\therefore \overrightarrow{\mathrm{V}}_{\mathrm{AD}}=20 \hat{\mathrm{i}}$ Hence $\overrightarrow{\mathrm{V}}_{\mathrm{AD}}=\overrightarrow{\mathrm{V}}_{\mathrm{BC}} \Rightarrow(\mathrm{B}) \mathrm{p}, \mathrm{r}$
(C) Net force exerted by earth on block of mass 8 kg is shown in FBD and normal reaction exerted by 8 kg block on earth is 120 N downwards.

Hence both forces in the statement are different in magnitude and opposite in direction. $\Rightarrow(\mathrm{C}) \mathrm{q}, \mathrm{s}$
(D) For magnitude of displacement to be less than distance, the particle should turn back. Since the magnitude of final velocity (v) is less than magnitude of initial velocity (u), the nature of motion is as shown.

\therefore Average velocity is in direction of initial velocity and magnitude of average velocity $=\frac{u-v}{2}$ is
less than u because $v<u . \Rightarrow(C) q, r$
Q. 34 (A) q (B) r (C) q (D) r

Let a be acceleration of two block system towards right

$$
\therefore \mathrm{a}=\frac{\mathrm{F}_{2}-\mathrm{F}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

The F.B.D. of m_{2} is

$$
\therefore \mathrm{F}_{2}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a}
$$

Solving $T=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\left(\frac{\mathrm{~F}_{2}}{\mathrm{~m}_{2}}+\frac{\mathrm{F}_{1}}{\mathrm{~m}_{1}}\right)$
(B) Replace F_{1} by $-\mathrm{F}_{1}$ is result of A

$$
\therefore \mathrm{T}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\left(\frac{\mathrm{~F}_{2}}{\mathrm{~m}_{2}}-\frac{\mathrm{F}_{1}}{\mathrm{~m}_{1}}\right)
$$

(C) Let a be acceleration of two block system towards left

$$
\therefore \mathrm{a}=\frac{\mathrm{F}_{2}-\mathrm{F}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}
$$

The FBD of m_{2} is

$$
\therefore \mathrm{F}_{2}-\mathrm{N}_{2}=\mathrm{m}_{2} \mathrm{a}
$$

Solving $N=\frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(\frac{F_{1}}{m_{1}}+\frac{F_{2}}{m_{2}}\right)$
(D) Replace F_{1} by $-\mathrm{F}_{1}$ in result of C

$$
\mathrm{N}=\frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\left(\frac{\mathrm{~F}_{2}}{\mathrm{~m}_{2}}-\frac{\mathrm{F}_{1}}{\mathrm{~m}_{1}}\right)
$$

NUMERICAL VALUE BASED

Q. 1 [7]

$\overrightarrow{\mathrm{A}}_{\text {cat } / \mathrm{g}}=-\mathrm{a}_{1} \hat{\mathrm{j}}+\mathrm{a}_{2} \hat{\mathrm{j}}=\overrightarrow{0}$
$\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}$
$3 a+f-3 g=3 a$
on solving above equation

$$
\begin{aligned}
& \mathrm{a}=7\left(\frac{\mathrm{~g}}{4}\right) \\
& \mathrm{n}=7
\end{aligned}
$$

Q. 2 [0020]

For the dog,

$$
\mathrm{N}+\mathrm{T} \sin \theta-\mathrm{Mg}=0 \quad \text { (vertical })
$$

$\mathrm{F}-\mathrm{T} \cos \theta=0$
(horizontal)
For maximum extension, f
$=\mu \mathrm{N}$
For spring, $\mathrm{T} \cos \theta-\mathrm{kx}=0$
(horizontal)

We have four unknowns
($\mathrm{N}, \mathrm{T}, \mathrm{F}, \mathrm{x}$) and four equations.
Solve for T:
$\mathrm{T} \cos \theta=\mathrm{kx}$
$\Rightarrow \quad \mathrm{T}=\mathrm{kx} / \cos \theta$
Substitute for F and solve for N

$$
\begin{array}{ll}
& \mu \mathrm{N}-\mathrm{T} \cos \theta=0 \\
\Rightarrow & \mathrm{~N}=\mathrm{T} \cos \theta / \mu= \\
\mathrm{kx} / \mu &
\end{array}
$$

Q. 3 [55]

Considering motion of the block w.r..t the inclined plane

Pseudo force on block $F_{P}=25 \mathrm{~N}$
Applying Newton's law on the block in direction perpendicular to the inclined surface,

$$
\begin{aligned}
& \mathrm{N}=25 \sin 37^{\circ}+50 \cos 37^{\circ} \\
& \mathrm{N}=15+40 \\
& \mathrm{~N}=55 \text { Newton }
\end{aligned}
$$

By Newton's Third law,
this force exerted by inclined plane on the block is equal to the force exerted by the block on the inclined plane.
Q. 4 [8]

For equilibrium,

$$
\begin{aligned}
& 10=8+\mathrm{T} \\
& \mathrm{~T}+\mathrm{f}_{2}=20 \\
& \Rightarrow \mathrm{f}_{2}=18 \mathrm{~N}
\end{aligned}
$$

Q. $5 \quad[10 \mathrm{sec}]$
$\mathrm{a}_{\mathrm{x}}=\frac{6}{1+5}=1 \mathrm{~ms}^{-2}$
$\mathrm{N}=1 \times 1=1 \mathrm{~N}$
$\mathrm{f}_{\mathrm{r}}=\mu \mathrm{N}=\frac{1}{2}$
$\mathrm{a}=\frac{\mathrm{fr}}{\mathrm{m}}=\frac{1}{2}$
$0=\mathrm{v}_{0}-\frac{1}{2} \times \mathrm{t}$
$\mathrm{t}=10 \mathrm{sec}$.

Q. 6 [4]

$\mathrm{a}=4 \mathrm{t}$
at $\mathrm{t}=1 \mathrm{sec}$, slipping occure
$\mathrm{ma}=\mu_{\mathrm{s}} \mathrm{mg}$
$4 \mathrm{t}=\mu \mathrm{g}$
$\mu_{\mathrm{s}}=0.4$
$\mathrm{t}=1 \rightarrow \mathrm{t}=3$ slipping occur
$\mathrm{b} / \mathrm{wt}=1 \& \mathrm{t}=2 \mathrm{sec}$
$\left(4 \mathrm{t}-\mu_{\mathrm{k}} \mathrm{g}\right)=\frac{\mathrm{dv}}{\mathrm{dt}}$
$\mathrm{v}=\left[2 \mathrm{t}^{2}-\mu_{\mathrm{k}} \mathrm{gt}\right]_{1}^{2}$
$\mathrm{v}=2 \times 3-\mu_{\mathrm{k}} \mathrm{g}$
$\mu_{\mathrm{k}}=0.3, \frac{3 \mu_{\mathrm{s}}}{\mu_{\mathrm{k}}}=4$
Q. 7 [10]
a_{1} and a_{2} w.r.t. ground

$$
\begin{aligned}
& a_{1}=\frac{\mu \mathrm{mg}}{\mathrm{~m}}=2 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{a}_{2}=\frac{\mu \mathrm{mg}}{\mathrm{M}}=1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Plank as frame of reference

Plank comes to rest

$\tan \alpha=3=\frac{\mathrm{h}}{\mathrm{t}}$

$$
h=3 t
$$

for minimum time, man will acceleration and retard with $a_{1 / 2}$ for equal time interval t.
Area of v vs t graph $=$ displacment

$$
\frac{1}{2}(2 t)(3 t)=75 \quad t=5
$$

minimum time $=2 \mathrm{t}=10 \mathrm{sec}$
Q. $8 \quad[2000 \mathrm{~N}]$

acceleration of the blocks, $a=\frac{F}{100}$

FBD of B,

Applying Newton's II Law in horizontal for block B,

$$
\begin{array}{ll}
& \mathrm{N}=10 \times \frac{\mathrm{F}}{100} \\
& \text { For limiting condition } \mathrm{f}=\mu \mathrm{N} \\
\therefore \quad & \mathrm{f}=10 \mathrm{~g} \\
& \mu \mathrm{~N} \geq 10 \mathrm{~g} \\
& 0.5 \times \frac{\mathrm{F}}{10} \geq 10 \mathrm{~g} \\
\therefore \quad & \mathrm{~F} \geq 2000 \mathrm{~N} .
\end{array}
$$

KVPY

PREVIOUS YEAR'S
Q. $1 \quad$ (A)

$\mathrm{T}=\mathrm{k}_{2} \mathrm{x}-\mathrm{mg}=\mathrm{ma}_{1}$
$\mathrm{k}_{2} \mathrm{x}+\mathrm{mg}-\mathrm{T}=\mathrm{ma}_{2}$
By constraint relation
$\mathrm{a}_{1}=\mathrm{a}_{2}$
Q. 2 (B)
$\mathrm{F}=\mathrm{Mg}=\mathrm{T}$
When spring is cut $\mathrm{a}_{\mathrm{M}}=0$
For M ${\underset{m}{\mathrm{mg}}}_{\mathrm{M}}^{\operatorname{mg}}$ ($\mathrm{a}_{\mathrm{m}}=\left(\frac{M-m}{m}\right)$ g
Q. 3 (B)

Let $\mathrm{f}=\mathrm{K}^{\mathrm{n}}$
At $\mathrm{t}=2 \mathrm{~F}=2=\mathrm{K} 2^{\mathrm{n}}$
$\mathrm{t}=4$
$\mathrm{F}=16=\mathrm{K}^{4}$
$\Rightarrow \frac{16}{2}=\left(\frac{4}{2}\right)^{\mathrm{n}}=2^{\mathrm{n}} \Rightarrow \mathrm{n}=3$
$\mathrm{F}=\mathrm{K} 2^{3}=\Rightarrow \mathrm{K}=\frac{1}{4}$
$F=\frac{t^{3}}{4}$
$\mathrm{dp}=\int_{0}^{\mathrm{t}} \mathrm{Fdt}=\frac{\mathrm{t}^{4}}{16}=\mathrm{m}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{t}}\right)$
$\mathrm{t}=3 \mathrm{sec} \frac{81}{16}=2 \mathrm{~m}$
$\mathrm{t}=4 \quad \frac{256}{16}=\mathrm{mV}_{\mathrm{f}}$
$\frac{\mathrm{V}_{\mathrm{t}}}{2}=\frac{256}{81} \Rightarrow \mathrm{~V}_{\mathrm{f}}=6.32$
Q. 4 (A)

According to free body diagram

$\mathrm{F}-\mathrm{N}=8 \mathrm{a}$
$\mathrm{f}=2 \mathrm{~g}=20$
$\Rightarrow \mu \mathrm{N}=20$
$\Rightarrow \mathrm{N}=\frac{20}{\mu}=\frac{20}{0.5}=40$
$\Rightarrow \mathrm{N}=2 \mathrm{a}$
$\Rightarrow \mathrm{a}=\frac{\mathrm{N}}{2}=\frac{40}{2}=20 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=\mathrm{N}+8 \mathrm{a}=10 \mathrm{a}$ [from equation (1)]
$\mathrm{F}=10 \times 20=200$ newton
Q. 5 (A)

Velocity after time t
$\mathrm{v}=\mathrm{v}_{0}-\mu \mathrm{gt}$
$\mathrm{v} \geq 0 \Rightarrow \mathrm{v}_{0} \geq \mu \mathrm{gt}$
Displacement in time ' t '
$\Delta X=v_{0} t-\frac{1}{2} \mu g t^{2}$
$1=2 \mathrm{v}_{0}-\frac{1}{2} \mu \mathrm{~g}(2)^{2}$
$\mathrm{v}_{0}=\left(\frac{1}{2}+\mu \mathrm{g}\right)$
$\frac{1}{2}+\mu \mathrm{g}>2 \mu \mathrm{t} \quad(\mathrm{t}=2 \mathrm{sec})$
$\frac{1}{2}+\mu \mathrm{g}>2 \mu \mathrm{~g}$
$\mu \mathrm{g}<\frac{1}{2}$
$\mu<\frac{1}{2 g}$
$\mu<0.05$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (1)
$\mathrm{a}_{\mathrm{x}}=\frac{20}{2}=10 \mathrm{~m} / \mathrm{s}^{2}$
$x=0+\frac{1}{2} \times 10 \times 10^{2}=500 m$
Q. $2 \quad$ [492]
$\mathrm{mg}-\mathrm{V}$ T $=\mathrm{ma}$
$\mathrm{T}=\mathrm{m}(\mathrm{g}-\mathrm{a})$
$=60[10-1.8]$
$=60 \times 8.2$
$=492 \mathrm{~N}$
Q. 3 [3]

$\mathrm{F} \sin 60^{\circ}$
$F \cos 60^{\circ}=\mu\left(3 \mathrm{~g}+\mathrm{F} \sin 60^{\circ}\right)$
$\therefore \quad \frac{F}{2}=\mu\left(\sqrt{3} g+\frac{\sqrt{3} F}{2}\right)$
$\therefore \quad \frac{F}{2}=\frac{\sqrt{3} g}{3 \sqrt{3}}+\frac{F}{6}$
$\therefore \quad \frac{F}{3}=\frac{\sqrt{3} g}{3 \sqrt{3}}$
$\mathrm{F}=\mathrm{g}=10$
$3 \mathrm{x}=10$
$x=\frac{10}{3}$
$=3.33$
Q. $4 \quad[25 \mathrm{~cm}]$
$\mu \geq \tan \theta=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dx}}{4}=\frac{\mathrm{x}}{2}$
$0.5 \geq \frac{x}{2}$

$$
\begin{aligned}
& x \leq 1 \\
& \sqrt{4 y} \leq 1 \\
& 2 \sqrt{y} \leq 1 \\
& y \leq \frac{1}{4}
\end{aligned}
$$

Q. 5
[25]

$$
\mathrm{F}=\mathrm{N}, \quad \mathrm{f}=0.2 \times \mathrm{N}
$$

$0.2 \mathrm{~N} \leq 5$
$\mathrm{N} \leq 25$
Q. 6 [30]

$\mathrm{N}+\mathrm{T}=90$
$\mathrm{T}=\mu \mathrm{N}=0.5(90-\mathrm{T})$
$1.5 \mathrm{~T}=45$
$\mathrm{T}=30$
Q. 7

$\mathrm{N}=\mathrm{mg}-\mathrm{f} \sin \theta$
$\mathrm{F} \cos \theta-\mu_{\mathrm{K}} \mathrm{N}=\mathrm{ma}$
$F \cos \theta-\mu_{K}(m g-F \sin \theta)=m a$

$$
\mathrm{a}=\frac{\mathrm{F}}{\mathrm{~m}} \cos \theta-\mu_{\mathrm{k}}\left(\mathrm{~g}-\frac{\mathrm{F}}{\mathrm{~m}} \sin \theta\right)
$$

$\mathrm{a}_{\text {max }}=\mu \mathrm{g}=\frac{3}{7} \times 9.8$
$\mathrm{F}=(\mathrm{M}+\mathrm{m}) \mathrm{a}_{\text {max }}=5 \mathrm{a}_{\text {max }}$
$=21$ Newton
Q. 9 [5]

$\mathrm{F} \cos \theta=\mu \mathrm{N}$
$\mathrm{F} \cos \theta+\mathrm{N}=\mathrm{mg}$
$\Rightarrow \mathrm{F}=\frac{\mu \mathrm{mg}}{\cos \theta+\mu \sin \theta}$

$$
\mathrm{F}_{\min }=\frac{\mu \mathrm{mg}}{\sqrt{1+\mu^{2}}}=\frac{\frac{1}{\sqrt{3}} \times 10}{\frac{2}{\sqrt{3}}}=5
$$

Q. 10 (4)

Here $\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}+\overrightarrow{\mathrm{F}}_{3}=0$
$\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2}=-\overrightarrow{\mathrm{F}}_{3}$
Since $\overrightarrow{\mathrm{F}}_{\text {net }}=0$ (equilibrium)
Both statements correct
Q. 11 (2)
Q. 12 (1)
Q. 13 (2)
Q. 14 (3)
Q. 15 (2)
Q. 16 (2)

During upward motion

$\mathrm{F}=2 \mathrm{~N}=(+\mathrm{ve})$ constant
During downward motion

$\Rightarrow \mathrm{F}=2 \mathrm{~N}=(-\mathrm{ve})$ constant
\Rightarrow Best possible answer is option (2)
Q. 17 (4)
let acceleration of wedge is a_{1} and acceleration of block w.r.t. wedge is a_{2}

$\mathrm{N} \cos 60^{\circ}=M \mathrm{a}_{1}=16 \mathrm{a}_{1}$
$\Rightarrow \mathrm{N}=32 \mathrm{a}_{1}$
F.B.D. of block w.r.t. wedge

\perp to incline
$\mathrm{N}=8 \mathrm{~g} \cos 30^{\circ}-8 \mathrm{a}_{1} \sin 30^{\circ} \Rightarrow 32 \mathrm{a}_{1}=4 \sqrt{3} \mathrm{~g}-4 \mathrm{a}_{1}$
$\Rightarrow \mathrm{a}_{1}=\frac{\sqrt{3}}{9} \mathrm{~g}$
Along incline
$8 \mathrm{~g} \sin 30^{\circ}+8 \mathrm{a}_{1} \cos 30^{\circ}=\mathrm{ma}_{2}=8 \mathrm{a}_{2}$
$\mathrm{a}^{2}=\mathrm{g} \times \frac{1}{2}+\frac{\sqrt{3}}{9} \mathrm{~g} \cdot \frac{\sqrt{3}}{2}=\frac{2 \mathrm{~g}}{3}$
Option (4)
Q. 18 (4)
Q. 19 (4)

$\mathrm{F}_{\text {thrust }}=\left(\frac{\mathrm{dm}}{\mathrm{dt}} \cdot \mathrm{V}_{\text {rel }}\right)$
$\left(\frac{\mathrm{dm}}{\mathrm{dt}} \mathrm{V}_{\mathrm{rel}}-\mathrm{mg}\right)=\mathrm{ma}$
$\Rightarrow\left(\frac{\mathrm{dm}}{\mathrm{dt}}\right) \times 500-10^{3} \times 10=10^{3} \times 20$
$\frac{\mathrm{dm}}{\mathrm{dt}}=(60 \mathrm{~kg} / \mathrm{s})$
Option (4)
Q. 20
Q. 21 (3)

On smooth incline
$\mathrm{a}=\mathrm{g} \sin 30^{\circ}$
by $S=u t+\frac{1}{2} a t^{2}$
$\mathrm{S}=\frac{1}{2} \frac{\mathrm{~g}}{2} \mathrm{~T}^{2}=\frac{\mathrm{g}}{4} \mathrm{~T}^{2}$

On rough incline
$\mathrm{a}=\mathrm{g} \sin 30^{\circ}-\mu \mathrm{g} \cos 30^{\circ}$
by $S=u t+\frac{1}{2} \mathrm{at}^{2}$
$S=\frac{1}{4} g(1-\sqrt{3} \mu)(\alpha T)^{2}$

By (i) and (ii)
$\frac{1}{4} \mathrm{gT}^{2}=\frac{1}{4} \mathrm{~g}(1-\sqrt{3} \mu) \alpha^{2} \mathrm{~T}^{2}$
$\Rightarrow 1-\sqrt{3} \mathrm{~g}=\frac{1}{\alpha^{2}} \Rightarrow \mathrm{~g}=\left(\frac{\alpha^{2}-1}{\alpha^{2}}\right) \cdot \frac{1}{\sqrt{3}}$
$\Rightarrow \mathrm{x}=3.00$

Q. 22 [3]

Q. 23 [15]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A)

$P_{1}=m g \sin \theta-\mu m g \cos \theta$
$P_{2}=m g \sin \theta+\mu m g \cos \theta$
Initially block has tendency to slide down and as $\tan \theta$ $>\mu$, maximum friction $\mu \mathrm{mg} \cos \theta$ will act in positive direction. When magnitude P is increased from P_{1} to P_{2}, friction reverse its direction from positive to negative and becomes maximum i.e. $\mu \mathrm{mg} \cos \theta$ in opposite direction.
Q. $2 N=5$

$\mathrm{F}_{1}=\frac{\mathrm{mg}}{\sqrt{2}}+\frac{\mu \mathrm{mg}}{\sqrt{2}} ;$ $\mathrm{F}_{2}=\frac{\mathrm{mg}}{\sqrt{2}}-\frac{\mu \mathrm{mg}}{\sqrt{2}}$
$\mathrm{F}_{1}=3 \mathrm{~F}_{2}$
$1+\mu=3-3 \mu$
$4 \mu=2$
$\mu=\frac{1}{2}$
$\mathrm{N}=10 \mu$
$\mathrm{N}=5$
Q. 3 (A, C)

$$
\begin{array}{ll}
\mathrm{f}=0, \text { If } \sin \theta=\cos \theta & \Rightarrow \theta=45^{\circ} \\
\mathrm{f} \text { towards } \mathrm{Q}, \sin \theta>\cos \theta & \Rightarrow \theta>45^{\circ} \\
\text { f towards } \mathrm{P}, \sin \theta<\cos \theta & \Rightarrow \theta<45^{\circ}
\end{array}
$$

Q. 4 (D)

Block will not slip if
$\left(m_{1}+m_{2}\right) g \sin \theta \leq \mu m_{2} g \cos \theta$
$3 \sin \theta \leq\left(\frac{3}{10}\right)(2) \cos \theta$
$\tan \theta \leq \frac{1}{5}$

$$
\Rightarrow \quad \theta \leq 11.5^{\circ}
$$

(P) $\theta=5^{\circ} \quad$ friction is static $\quad \mathrm{f}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g} \sin \theta$
(Q) $\theta=10^{\circ}$ friction is static $\quad \mathrm{f}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g} \sin \theta$
(R) $\theta=15^{\circ}$ friction is kinetic $\mathrm{f}=\mu \mathrm{m}_{2} \mathrm{~g} \cos \theta$
(S) $\theta=20^{\circ}$ friction is kinetic
$\mathrm{f}=\mu \mathrm{m}_{2} \mathrm{~g} \cos \theta$
Q. 5 (A, B, D)

$$
\begin{aligned}
& \frac{\mathrm{dk}}{\mathrm{dt}}=\gamma \mathrm{t} \text { as } \quad \mathrm{k}=\frac{1}{2} \mathrm{mv}^{2} \\
& \therefore \frac{\mathrm{dk}}{\mathrm{dt}}=\mathrm{mv} \frac{\mathrm{dv}}{\mathrm{dt}}=\gamma \mathrm{t} \\
& \therefore \mathrm{~m} \int_{0}^{\mathrm{v}} \mathrm{vdv}=\gamma \int_{0}^{\mathrm{t}} \mathrm{tdt} \\
& \frac{\mathrm{mv}^{2}}{2}=\frac{\gamma \mathrm{t}^{2}}{2}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{v}=\sqrt{\frac{\gamma}{\mathrm{m}} \mathrm{t}} \tag{i}
\end{equation*}
$$

$\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=\sqrt{\frac{\gamma}{\mathrm{m}}}=$ constant
since $\mathrm{F}=\mathrm{ma}$
$\therefore \mathrm{F}=\mathrm{m} \sqrt{\frac{\gamma}{\mathrm{m}}}=\sqrt{\gamma \mathrm{m}}=$ constant
Q. 6 (C)

$\mathrm{T}=\frac{2(2 \mathrm{~m})(\mathrm{m})}{3 \mathrm{~m}}\left(\mathrm{~g}-\mathrm{a}_{1}\right)$
$=\frac{4 m}{3}\left(g-a_{1}\right)$
$\frac{8 m}{3}\left(g-a_{1}\right)-k x=2 m a_{1}$
$\frac{8 \mathrm{Mg}}{3}-\frac{8 \mathrm{ma}_{1}}{3}-\mathrm{kx}=2 \mathrm{ma}_{1}$
$\frac{8 \mathrm{Mg}}{3}-\mathrm{kx}=\frac{14 \mathrm{ma}_{1}}{3}$
$\frac{8 \mathrm{Mg}-3 \mathrm{kx}}{14 \mathrm{~m}}=\mathrm{a}_{1}$
$\mathrm{a}_{1}=\frac{8 \mathrm{mg}-3 \mathrm{kx}}{14 \mathrm{~m}}$
$\frac{\mathrm{vdv}}{\mathrm{dx}}=\left(\frac{8 \mathrm{Mg}}{14 \mathrm{~m}}-\frac{3 \mathrm{kx}}{14 \mathrm{~m}}\right)$
$\int v d v=\frac{1}{14 m} \int(8 M g-3 k x) d x$
for max elongation
$0=\frac{1}{14 m} \int_{0}^{x_{0}}(8 m g-3 k x) d x$
$=\frac{1}{14 \mathrm{~m}}\left(8 \mathrm{Mgx}_{0}-\frac{3 \mathrm{kx}_{0}^{2}}{2}\right)$
$8 \mathrm{Mgx}_{0}=\frac{3 \mathrm{kx}_{0}^{2}}{2}$
$\mathrm{x}_{0}=\frac{16 \mathrm{Mg}}{3 \mathrm{k}}$
at $x=\frac{x_{0}}{2}$
$\int_{0}^{v} v d v=\frac{1}{14 m} \int_{0}^{x_{0} / 2}(8 M g-3 k x) d x$
$\frac{\mathrm{v}^{2}}{2}=\frac{1}{14 \mathrm{~m}}\left(\frac{8 \mathrm{Mgx}_{0}}{2}-\frac{3 \mathrm{kx}_{0}^{2}}{2 \times 4}\right)$
$\mathrm{v}^{2}=\frac{1}{7 \mathrm{~m}}\left(\frac{8 \mathrm{Mg}}{2} \times \frac{16 \mathrm{Mg}}{3 \mathrm{x}}-\frac{3 \mathrm{x}}{8} \times \frac{16 \mathrm{M}^{2} \mathrm{~g}^{2}}{3 \mathrm{x} \times 3 \mathrm{x}}\right)$
$=\frac{1}{7 m}\left(\frac{64 \mathrm{M}^{2} \mathrm{~g}^{2}}{3 \mathrm{x}}-\frac{2 \mathrm{M}^{2} \mathrm{~g}^{2}}{3 \mathrm{x}}\right)$
$v^{2}=\frac{62 \mathrm{Mg}^{2}}{21 \mathrm{k}}$
For acc. $2 \mathrm{a}_{1}=\mathrm{a}_{2}+\mathrm{a}_{3}$ therefore
$a_{2}-a_{1}=a_{1}-a_{3}$
$\mathrm{a}_{1}=\frac{8 \mathrm{Mg}-3 \mathrm{kx}_{0} / 4}{14 \mathrm{~m}}$
$=\frac{8 \mathrm{~g}}{14}-\frac{3 \mathrm{kx}_{0}}{14 \mathrm{~m} \times 4}$
$=\frac{8 g}{14}-\frac{3 \mathrm{x}}{14 \mathrm{~m} \times 4} \times \frac{16 \mathrm{Mg}}{3 \mathrm{x}}$
$=\frac{8 \mathrm{~g}}{14}-\frac{4 \mathrm{~g}}{14}$
$=\frac{4 \mathrm{~g}}{14}=\frac{2 \mathrm{~g}}{7}$
OR
$\frac{8 m g}{3}-\frac{8 m}{3} a_{1}-k x=2 m a_{1}$
$\frac{14 m}{3} a_{1}=-k\left[x-\frac{8 m g}{3 k}\right]$
$\mathrm{a}_{1}=-\frac{3 k}{14 \mathrm{~m}}\left[\mathrm{x}-\frac{8 \mathrm{mg}}{3 \mathrm{k}}\right]$
that means, block 2 m (connected with the spring) will perform SHM about $\mathrm{x}_{1}=\frac{8 \mathrm{mg}}{3 \mathrm{k}}$ therefore.
maximum elongation in the spring $\mathrm{x}_{0}=2 \mathrm{x}_{1}=\frac{16 \mathrm{mg}}{3 \mathrm{k}}$ on comparing equation (1) with
$a=-\omega^{2}\left(x-x_{0}\right)$
$\omega=\sqrt{\frac{3 \mathrm{k}}{14 \mathrm{~m}}}$
at $\left(\frac{\mathrm{x}_{0}}{2}\right)$, block will be passing through its mean position therefore at mean position
$\mathrm{v}_{0}=\mathrm{A} \omega=\frac{8 \mathrm{mg}}{3 \mathrm{k}} \sqrt{\frac{3 \mathrm{k}}{14 \mathrm{~m}}}$
At. $\frac{x_{0}}{4} \Rightarrow x=\frac{A}{2}$
$\therefore \mathrm{a}_{\mathrm{cc}}=-\frac{\mathrm{A}}{2} \omega^{2}$
$=-\frac{4 \mathrm{mg}}{3 \mathrm{k}} \cdot \frac{3 \mathrm{~h}}{14 \mathrm{~m}}=\frac{2 \mathrm{~g}}{7}$

Q. 7 (2.00)

Let $\mathrm{T}_{\mathrm{S}}=$ tension in steel wire $\mathrm{T}_{\mathrm{C}}=$ Tension in copper wire in x direction
$\mathrm{T}_{\mathrm{C}} \cos 30^{\circ}=\mathrm{T}_{\mathrm{S}} \cos 60^{\circ}$
$\mathrm{T}_{\mathrm{C}} \times \frac{\sqrt{3}}{2}=\mathrm{T}_{\mathrm{S}} \times \frac{1}{2}$
$\sqrt{3} \mathrm{~T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{S}} \ldots \ldots$. (i)
in y direction
$\mathrm{T}_{\mathrm{C}} \sin 30^{\circ}+\mathrm{T}_{\mathrm{S}} \sin 60^{\circ}=100$
$\frac{\mathrm{T}_{\mathrm{C}}}{2}+\frac{\mathrm{T}_{\mathrm{S}} \sqrt{3}}{2}=100$
Solving equation (i) \& (ii)
$\mathrm{T}_{\mathrm{C}}=50 \mathrm{~N}$
$\mathrm{T}_{\mathrm{S}}=50 \sqrt{3} \mathrm{~N}$
We know
$\Delta \mathrm{L}=\frac{\mathrm{FL}}{\mathrm{AY}}$
$=\frac{\Delta \mathrm{L}_{\mathrm{C}}}{\Delta \mathrm{L}_{\mathrm{S}}}=\frac{\mathrm{T}_{\mathrm{C}} \mathrm{L}_{\mathrm{C}}}{\mathrm{A}_{\mathrm{C}} \mathrm{Y}_{\mathrm{C}}} \times \frac{\mathrm{A}_{\mathrm{S}} \mathrm{Y}_{\mathrm{S}}}{\mathrm{T}_{\mathrm{S}} \mathrm{L}_{\mathrm{S}}}$
On solving above equation
$\frac{\Delta \mathrm{L}_{\mathrm{C}}}{\Delta \mathrm{L}_{\mathrm{S}}}=2$
Ans. 2.00

